scholarly journals Discrimination of Trichosanthis Fructus from Different Geographical Origins Using Near Infrared Spectroscopy Coupled with Chemometric Techniques

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1550 ◽  
Author(s):  
Liang Xu ◽  
Wen Sun ◽  
Cui Wu ◽  
Yucui Ma ◽  
Zhimao Chao

Near infrared (NIR) spectroscopy with chemometric techniques was applied to discriminate the geographical origins of crude drugs (i.e., dried ripe fruits of Trichosanthes kirilowii) and prepared slices of Trichosanthis Fructus in this work. The crude drug samples (120 batches) from four growing regions (i.e., Shandong, Shanxi, Hebei, and Henan Provinces) were collected, dried, and used and the prepared slice samples (30 batches) were purchased from different drug stores. The raw NIR spectra were acquired and preprocessed with multiplicative scatter correction (MSC). Principal component analysis (PCA) was used to extract relevant information from the spectral data and gave visible cluster trends. Four different classification models, namely K-nearest neighbor (KNN), soft independent modeling of class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA), and support vector machine-discriminant analysis (SVM-DA), were constructed and their performances were compared. The corresponding classification model parameters were optimized by cross-validation (CV). Among the four classification models, SVM-DA model was superior over the other models with a classification accuracy up to 100% for both the calibration set and the prediction set. The optimal SVM-DA model was achieved when C =100, γ = 0.00316, and the number of principal components (PCs) = 6. While PLS-DA model had the classification accuracy of 95% for the calibration set and 98% for the prediction set. The KNN model had a classification accuracy of 92% for the calibration set and 94% for prediction set. The non-linear classification method was superior to the linear ones. Generally, the results demonstrated that the crude drugs from different geographical origins and the crude drugs and prepared slices of Trichosanthis Fructus could be distinguished by NIR spectroscopy coupled with SVM-DA model rapidly, nondestructively, and reliably.

2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


2020 ◽  
Vol 36 (3) ◽  
pp. 257-270
Author(s):  
Jean Frederic Isingizwe Nturambirwe ◽  
Helene H Nieuwoudt ◽  
Willem Jacobus Perold ◽  
Umezuruike Linus Opara

HighlightsIn the Emission Head (EH) configuration differences in apple bruise severity were well captured.A good representation of new samples variability, in calibration, ensured robust quantitative PLS-DA models.EH mode with PLS-DA is an attractive spectroscopic option for inline apple sorting based on bruise damage. Abstract. Bruise damage in apples is very common and undesirable because it hinders consumer satisfaction and greatly contributes to food loss. Fast detection of bruise damage in fruit using spectroscopic systems is still problematic, especially in terms of quantitative and objective assessments of mechanical damage and standardization of bruise measurement method, among other issues. Non-destructive techniques among which is near infrared (NIR) spectroscopy are under development as a potential solution carrier for such issues. A study of bruise damage was conducted on three apple cultivars using Fourier transform (FT) near infrared spectroscopy in two configurations (‘emission head’ of Bruker’s Matrix-F and ‘integrating sphere’ of Bruker’s multipurpose analyzer, MPA). The emission head (EH) allows for contactless large sample (100 mm) exposure that simulates on-line applications, while the MPA (sample size: 22 mm) is commonly used for in-laboratory analysis of inhomogeneous material such as fruit. Bruise damages were mechanically induced in apples, bruise sizes measured physically and destructively. Partial least squares discriminant analysis (PLS-DA) was used to determine the differences captured by the scanning spectrometers in apple fruit tissues. Discriminant analysis revealed that in both sample acquisition modes, distinction between bruised and non-bruised apple fruit tissue was achieved with high (from 78% to 93%) accuracy of classification (ACcl) based solely on spectral data. The classification accuracy improved when individual cultivars were considered and ranged from 94% to 96%. Classification models were tested for robustness and showed that both cultivar and bruise severity had influence on classification models’ performance. The results showed ability of the emission head configuration in detecting bruises and differentiating between severity of bruises in apple fruit, thus making it a good candidate for use in rapid detection and quantitative assessment of bruising in apple on sorting lines. Possibilities for improving the classification model performance and ensuring their robustness for the EH were suggested. Keywords: Apple bruise, Discriminant analysis, Model performance, Model threshold, NIR spectroscopy.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


2019 ◽  
Vol 9 (8) ◽  
pp. 1530 ◽  
Author(s):  
Guangjun Qiu ◽  
Enli Lü ◽  
Ning Wang ◽  
Huazhong Lu ◽  
Feiren Wang ◽  
...  

Seed purity is a key indicator of crop seed quality. The conventional methods for cultivar identification are time-consuming, expensive, and destructive. Fourier transform near-infrared (FT-NIR) spectroscopy combined with discriminant analyses, was studied as a rapid and nondestructive technique to classify the cultivars of sweet corn seeds. Spectra with a range of 1000–2500 nm collected from 760 seeds of two cultivars were used for the discriminant analyses. Thereafter, 126 feature wavelengths were identified from 1557 wavelengths using a genetic algorithm (GA) to build simplified classification models. Four classification algorithms, namely K-nearest neighbor (KNN), soft independent method of class analogy (SIMCA), partial least-squares discriminant analysis (PLS-DA), and support vector machine discriminant analysis (SVM-DA) were tested on full-range wavelengths and feature wavelengths, respectively. With the full-range wavelengths, all four algorithms achieved a high classification accuracy range from 97.56% to 99.59%, and the SVM-DA worked better than other models. From the feature wavelengths, no significant decline in accuracies was observed in most of the models and a high accuracy of 99.19% was still obtained by the PLS-DA model. This study demonstrated that using the FT-NIR technique with discriminant analyses could be a feasible way to classify sweet corn seed cultivars and the proper classification model could be embedded in seed sorting machinery to select high-purity seeds.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Lu Xu ◽  
Qiong Shi ◽  
Bang-Cheng Tang ◽  
Shunping Xie

A rapid indicator of mercury in soil using a plant (Artemisia lavandulaefolia DC., ALDC) commonly distributed in mercury mining area was established by fusion of Fourier-transform near-infrared (FT-NIR) spectroscopy coupled with least squares support vector machine (LS-SVM). The representative samples of ALDC (stem and leaf) were gathered from the surrounding and distant areas of the mercury mines. As a reference method, the total mercury contents in soil and ALDC samples were determined by a direct mercury analyzer incorporating high-temperature decomposition, catalytic adsorption for impurity removal, amalgamation capture, and atomic absorption spectrometry (AAS). Based on the FT-NIR data of ALDC samples, LS-SVM models were established to distinguish mercury-contaminated and ordinary soil. The results of reference analysis showed that the mercury level of the areas surrounding mercury mines (0–3 kilometers, 7.52–88.59 mg/kg) was significantly higher than that of the areas distant from mercury mines (>5 kilometers, 0–0.75 mg/kg). The LS-SVM classification model of ALDC samples was established based on the original spectra, smoothed spectra, second-derivative (D2) spectra, and standard normal transformation (SNV) spectra, respectively. The prediction accuracy of D2-LS-SVM was the highest (0.950). FT-NIR combined with LS-SVM modeling can quickly and accurately identify the contaminated ALDC. Compared with traditional methods which rely on naked eye observation of plants, this method is objective and more sensitive and applicable.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Si-Min Yan ◽  
Jun-Ping Liu ◽  
Lu Xu ◽  
Xian-Shu Fu ◽  
Hai-Feng Cui ◽  
...  

This paper focuses on a rapid and nondestructive way to discriminate the geographical origin of Anxi-Tieguanyin tea by near-infrared (NIR) spectroscopy and chemometrics. 450 representative samples were collected from Anxi County, the original producing area of Tieguanyin tea, and another 120 Tieguanyin samples with similar appearance were collected from unprotected producing areas in China. All these samples were measured by NIR. The Stahel-Donoho estimates (SDE) outlyingness diagnosis was used to remove the outliers. Partial least squares discriminant analysis (PLSDA) was performed to develop a classification model and predict the authenticity of unknown objects. To improve the sensitivity and specificity of classification, the raw data was preprocessed to reduce unwanted spectral variations by standard normal variate (SNV) transformation, taking second-order derivatives (D2) spectra, and smoothing. As the best model, the sensitivity and specificity reached 0.931 and 1.000 with SNV spectra. Combination of NIR spectrometry and statistical model selection can provide an effective and rapid method to discriminate the geographical producing area of Anxi-Tieguanyin.


2020 ◽  
pp. 096703352096375
Author(s):  
Wenjian Liu ◽  
Jun Liu ◽  
Jingmin Jiang ◽  
Yanjie Li

Seed vigour significantly influences the seed production and plant regeneration performance. The capability of NIR spectroscopy to identify seed vigour across multiple tree species rapidly and cost-effectively has been examined. The NIR spectra of seeds from five different tree species have been taken. Standard germination testing has also been used to verify seed vigour. Three classification models were trained, i.e., partial least squares-discriminant analysis (PLSDA), support vector machine (SVM) and Multilayer Deep neural network (DNN). Three types of spectral pre-processing methods and their combination were used to fit for the best classification model. The DNN model has shown good performance on all pre-processing methods and yielded higher accuracy than other models in this study, with accuracy, sensitivity, precision and specificity all equal to 1. Compared with other pre-processing methods, the second derivative spectra have shown a robust and consistent classification result in both PLSDA and DNN models. Five important regions including 1270, 1650, 1720, 2100, 2300 nm were found highly related to the seed vigour. This study has found a rapid and efficient methodology for seed vigour classification, which could serve for industrial use in a rapid and non-destructive way.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Feng Cui ◽  
Zi-Hong Ye ◽  
Lu Xu ◽  
Xian-Shu Fu ◽  
Cui-Wen Fan ◽  
...  

This paper reports the application of near infrared (NIR) spectroscopy and pattern recognition methods to rapid and automatic discrimination of the genotypes (parent, transgenic, and parent-transgenic hybrid) of cotton plants. Diffuse reflectance NIR spectra of representative cotton seeds (n=120) and leaves (n=123) were measured in the range of 4000–12000 cm−1. A practical problem when developing classification models is the degradation and even breakdown of models caused by outliers. Considering the high-dimensional nature and uncertainty of potential spectral outliers, robust principal component analysis (rPCA) was applied to each separate sample group to detect and exclude outliers. The influence of different data preprocessing methods on model prediction performance was also investigated. The results demonstrate that rPCA can effectively detect outliers and maintain the efficiency of discriminant analysis. Moreover, the classification accuracy can be significantly improved by second-order derivative and standard normal variate (SNV). The best partial least squares discriminant analysis (PLSDA) models obtained total classification accuracy of 100% and 97.6% for seeds and leaves, respectively.


2009 ◽  
Vol 17 (2) ◽  
pp. 59-67 ◽  
Author(s):  
Chenghui Lu ◽  
Bingren Xiang ◽  
Gang Hao ◽  
Jianping Xu ◽  
Zhengwu Wang ◽  
...  

This paper establishes a novel and rapid method for detecting pure melamine in milk powder using near infrared (NIR) spectroscopy based on least squares-support vector machine (LS-SVM). Partial least square discriminant analysis (PLS-DA) was used for the extraction of principal components (PCs). The scores of the first two PCs have been applied as inputs to LS-SVM. Compared to PLS-DA, the performance of LS-SVM was better, with higher classification accuracy, both 100% for the training and testing set. The detection limit was lower than 1 ppm. Based on the results, it was concluded that NIR spectroscopy combined with LS-SVM could be used as a rapid and accurate method for detecting pure melamine in milk powder.


Sign in / Sign up

Export Citation Format

Share Document