scholarly journals Activity and Diversity of Microorganisms in Root Zone of Plant Species Spontaneously Inhabiting Smelter Waste Piles

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5638
Author(s):  
Sylwia Siebielec ◽  
Grzegorz Siebielec ◽  
Piotr Sugier ◽  
Małgorzata Woźniak ◽  
Jarosław Grządziel ◽  
...  

The aim was to assess plant driven changes in the activity and diversity of microorganisms in the top layer of the zinc and lead smelter waste piles. The study sites comprised two types (flotation waste—FW and slag waste—SW) of smelter waste deposits in Piekary Slaskie, Poland. Cadmium, zinc, lead, and arsenic contents in these technosols were extremely high. The root zone of 8 spontaneous plant species (FW—Thymus serpyllum, Silene vulgaris, Solidago virgaurea, Echium vulgare, and Rumex acetosa; and SW—Verbascum thapsus; Solidago gigantea, Eupatorium cannabinum) and barren areas of each waste deposit were sampled. We observed a significant difference in microbial characteristics attributed to different plant species. The enzymatic activity was mostly driven by plant-microbial interactions and it was significantly greater in soil affected by plants than in bulk soil. Furthermore, as it was revealed by BIOLOG Ecoplate analysis, microorganisms inhabiting barren areas of the waste piles rely on significantly different sources of carbon than those found in the zone affected by spontaneous plants. Among phyla, Actinobacteriota were the most abundant, contributing to at least 25% of the total abundance. Bacteria belonging to Blastococcus genera were the most abundant with the substantial contribution of Nocardioides and Pseudonocardia, especially in the root zone. The contribution of unclassified bacteria was high—up to 38% of the total abundance. This demonstrates the unique character of bacterial communities in the smelter waste.

1970 ◽  
Vol 17 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Anita Pokharel ◽  
Madhu Chhetri ◽  
Chiranjibi P Upadhyaya

Limited information is available on the species composition, above ground biomass and its relations to grazing in a trans-Himalayan rangeland. Its assessment is essential for long term conservation and management. In the present study, we compared species composition, phenology, diversity index and biomass between controlled (without grazing) and open (free grazing) plots to assess the effects of grazing in the selected experimental sites of Upper Mustang during July and November 2005. Species encountered were classified as high, medium, low and non palatable and in three life form categories-grasses, shrubs and forbs. The experimental sites are dominated by forbs (80%) followed by grasses (15%) and shrubs (5%). Disturbance caused by grazing affects the phenological characteristics of the plant community. Result also reveals that species diversity, maximum possible diversity, evenness and species richness was higher in the grazed plots during July and November. A comparison of the aboveground biomass in July showed that mean percentage biomass of high, medium and low palatable species is higher in ungrazed plots. In November, the percentage biomass of only medium palatable species was higher in ungrazed plots and rest of the category is higher in grazed plots. Significant difference in July, a peak growing seasons for most of the plant species in the region reveals that the pasture has impact of livestock grazing. Keywords: Biomass, diversity, grazing effect, rangeland, species Banko Janakari: A journal of forestry information for Nepal Vol.17(1) 2007 pp.25-31


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Most Naznin ◽  
Mark Lefsrud ◽  
Valerie Gravel ◽  
Md Azad

The aim of this study was to investigate the different combinations of red (R) and blue (B) light emitting diode (LEDs’) lighting effects on growth, pigment content, and antioxidant capacity in lettuce, spinach, kale, basil, and pepper in a growth chamber. The growth chamber was equipped with R and B light percentages based on total light intensity: 83% R + 17% B; 91% R + 9% B; 95% R + 5% B; and control was 100% R. The photosynthetic photon flux density (PPFD), photoperiod, temperature, and relative humidity of the growth chamber were maintained at 200 ± 5 μmol m−2 s−1, 16 h, 25/21 ± 2.5 °C, and 65 ± 5%, respectively. It is observed that the plant height of lettuce, kale, and pepper was significantly increased under 100% R light, whereas the plant height of spinach and basil did not show any significant difference. The total leaf number of basil and pepper was significantly increased under the treatment of 95% R + 5% B light, while no significant difference was observed for other plant species in the same treatment. Overall, the fresh and dry mass of the studied plants was increased under 91% R + 9% B and 95% R + 5% B light treatment. The significantly higher flower and fruit numbers of pepper were observed under the 95% R + 5% B treatment. The chlorophyll a, chlorophyll b, and total chlorophyll content of lettuce, spinach, basil, and pepper was significantly increased under the 91% R + 9% B treatment while the chlorophyll content of kale was increased under the 95% R + 5% B light treatment. The total carotenoid content of lettuce and spinach was higher in the 91% R + 9% B treatment whereas the carotenoid content of kale, basil, and pepper was increased under the 83% R + 17% B treatment. The antioxidant capacity of the lettuce, spinach, and kale was increased under the 83% R + 17% B treatment while basil and pepper were increased under the 91% R + 9% B treatment. This result indicates that the addition of B light is essential with R light to enhance growth, pigment content, and antioxidant capacity of the vegetable plant in a controlled environment. Moreover, the percentage of B with R light is plant species dependent.


SURG Journal ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 5-13
Author(s):  
Adrian Helmers ◽  
Alexis Platek ◽  
Melissa Ponte ◽  
Natalie Secen ◽  
Karl Cottenie

This study quantified the impact of human activity on aquatic and shoreline plant species richness. We hypothesized that human activity at the shoreline would negatively impact plant species richness and that the extent of the impact would depend on the intensity of human activity. To test this, we sampled 11 lakes in Algonquin Provincial Park, of which five permitted motorboat access, and five permitted canoe access and prohibited motorboat access. The remaining lake, which had no designated access point for boats and was only accessible to researchers, acted as a control. To assess the impact of anthropogenic disturbance at each lake, we measured plant species richness in three 10 m by 2 m plots: a first plot at the access point, assumed to be the site of highest disturbance; a second at the site of intermediate disturbance, 30 m down shore from the access point; and a third at the site of lowest disturbance, 60 m down shore from the access point. We found a significant negative relationship between the level of disturbance and plant species richness, both in the motorboat-accessible and canoe access-only lakes. The control lake exhibited no correlation between disturbance level and plant species richness. However, there was no significant difference between motorboat-accessible and canoe access-only lakes in the relationship between disturbance level and plant species richness. Overall, this study highlights the consequences of anthropogenic disturbance on freshwater aquatic and shoreline plant communities, and provides a framework for future management and rehabilitation strategies.


2018 ◽  
Vol 34 (4) ◽  
pp. 281-290 ◽  
Author(s):  
Benjamin E. McMillan ◽  
Jake E. Bova ◽  
Carlyle C. Brewster ◽  
Nicola T. Gallagher ◽  
Sally L. Paulson

ABSTRACT The effect of 5 plant species (arborvitae [Thuja occidentalis], boxwood [Buxus sp., Japanese honeysuckle [Lonicera japonica], rhododendron [Rhododendron sp.], and zebra grass [Miscanthus sinensis]) and 2 rates of lambda-cyhalothrin (3.13 ml and 6.25 ml active ingredient [AI]/liter) on knockdown (1 h) and mortality (24 h) of adult female Aedes albopictus was evaluated over an 8-wk period. A significant difference in knockdown was observed between the 2 rates of lambda-cyhalothrin on the 5 plant species, with the highest proportion of knockdown observed on zebra grass and rhododendron treated at the higher rate. Although mortality was ≥60% and 85% on the 5 plant species at the low and high rates of lambda-cyhalothrin, respectively, a significant difference between the 2 rates was only observed on boxwood and Japanese honeysuckle (P < 0.0001). We also tested the residual toxicity of 3 barrier sprays (lambda-cyhalothrin, bifenthrin, and deltamethrin) and evaluated the efficacy of a short (5-min) exposure to the insecticides on knockdown and mortality of adults over time. Significantly higher knockdown was observed with lambda-cyhalothrin compared with bifenthrin and deltamethrin (P < 0.0001). Mean knockdown was ∼98%, 92%, and 20% for lambda-cyhalothrin, bifenthrin, and deltamethrin, respectively, at week 2, and ∼98%, 0%, and 44%, respectively, 8 wk after treatments were applied. Adult mortality from the 3 chemical treatments, however, remained above 90% throughout the study. Lastly, the trends in mean proportion of knockdown were similar for mosquitoes exposed for either 5 min or 24 h to the 3 chemicals. An overall decline in mean mortality over time, however, was observed for mosquitoes exposed for 5 min to the chemicals compared with mortality from the 24-h exposure. The results suggest that lambda-cyhalothrin can be an effective barrier spray treatment against Ae. albopictus adults because its efficacy is limited little by plant species, it has long residual toxicity, and it is effective following only 5 min of exposure.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4754 ◽  
Author(s):  
Lucía Vivanco ◽  
Nicolás Rascovan ◽  
Amy T. Austin

Plant–microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant–microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species’ effects on the litter fungal community. Together, our results suggest that plant–microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.


1986 ◽  
Vol 64 (11) ◽  
pp. 2446-2452 ◽  
Author(s):  
J. W. Sheard

Levels of lead-210, polonium-210, radium-226, and uranium are reported for 10 plant species (2 conifer, 4 shrub, 3 lichen, and 1 moss species) and soils in northern Saskatchewan. Two localities were studied in each of two regions, one uraniferous, the other not. Nonvascular species showed the highest levels of lead-210, polonium-210, and uranium, and the shrubs, the highest levels of radium-226. The lichen and moss species show no significant difference in accumulation of lead-210 and polonium-210 among regions, reflecting the assumed atmospheric distribution and particulate accumulation of these radionuclides. Seven of eight species for which comparisons could be made showed significant differences in uranium accumulation among regions. High levels in the lichen and moss species suggest that the primary source of uranium in these species is not directly from the soil. In contrast to the other radionuclides, radium-226 only showed significant differences among localities within regions, this being due to high accumulations occurring at one locality in the nonuraniferous region.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
A Aufschnaiter ◽  
K Schindler ◽  
B Fuchs-Neuhold ◽  
K Maruszczak ◽  
E Pail ◽  
...  

Abstract Background Overweight and obesity in childhood and the associated secondary diseases are constantly on the increase. Studies show that the school environment can have an influence on the weight of children. The Childhood Obesity Surveillance Initiative (COSI) of the WHO is a Europe-wide epidemiological monitoring of anthropometric sizes of school children aged six to nine, with Austria participating in COSI for the first time in 2016. Methods A retrospective secondary data analysis based on two standardized questionnaires was performed. On the one hand, data on determinants specific to the school field were collected, on the other hand anthropometric data of children in third grade were measured. Across Austria, data from 97 schools and 2530 children were collected and evaluated using descriptive and inductive statistical methods. Results In 43,3 % of the schools, an existing playground can be used outside school opening hours. 73,2 % of the schools integrate nutrition education into their school curriculum either as a separate subject or in combination with another subject. Milk and dairy products are available in 60,8 % of schools, fresh fruit in 63,9 % and vegetables in 51,5 %. 28,3 % of the examined, 8 to 9-year-old children are overweight or obese (n = 658), while boys have a significant higher BMI than girls (p < 0,001). Also, in urban areas children have a significant higher BMI on average than in rural areas (p = 0,025). No significant relationship could be identified between the duration of physical education lessons per week and the BMI. However, a significant difference in childreńs BMI became visible when school playgrounds were also accessible outside opening hours (p = 0,018). Conclusions The alarming number of overweight children in Austria should be diminished through policies and further interventions. Schools can make a substantial contribution to this. The course of the development could be closely observed through possible further surveys by COSI. Key messages 73,2% of the schools include nutrition education in their curricula. Yet, about every third Austrian child aged between 8 and 9 is overweight, with boys being significantly more overweight than girls. If school playgrounds are accessible outside opening hours, the childreńs BMI is significantly lower. In urban areas, children have a significantly higher BMI than in rural areas.


2002 ◽  
Vol 8 (2) ◽  
pp. 82 ◽  
Author(s):  
Michael A. MacDonald ◽  
Robert J. Taylor ◽  
Steven G. Candy

In Tasmania, a system of 100 m wide strips of native forest, referred to as wildlife habitat strips, is retained within production forest, including plantations. Thirty-nine points in 18 wildlife habitat strips within both eucalypt and pine plantations (which were not differentiated for the purposes of the present study) were paired with points in nearby extensive native forest and surveyed for birds. At non-riparian sites (upper slopes and ridges), bird species richness and total abundance were both significantly lower in habitat strips than in controls. This difference is quantitative rather than qualitative, as ordination did not distinguish strip sites and controls, and no species were obviously absent from habitat strips. Riparian zones showed no significant difference in species richness and total abundance between habitat strips and controls. Species richness and total abundance relative to controls increased as wildlife habitat strip length increased over the measured range (0.4-2.1 km). It is thought that this may be because birds perceive strips as linear forest patches rather than corridors, so that there may be a habitat area effect. Other strip characteristics such as width and plantation age were not significant in riparian areas, but may be important on upper slopes and ridges, and the former will affect strip area. Wildlife habitat strips appear to be a valuable component of a conservation programme for birds in production forests in Tasmania.


2006 ◽  
Vol 72 (4) ◽  
pp. 2331-2342 ◽  
Author(s):  
Mary Beth Leigh ◽  
Petra Prouzová ◽  
Martina Macková ◽  
Tomáš Macek ◽  
David P. Nagle ◽  
...  

ABSTRACT The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.


Author(s):  
Jennifer T.M. Andrade ◽  
Natália Barros Palhano ◽  
Claudia Helena Tagliaro ◽  
Colin Robert Beasley

Brazilian mangroves have ecological and economic importance, with molluscs, crustaceans and polychaetes being diverse and common faunal groups. The present study characterizes the macrofauna associated with logs from two mangrove forests in Pará State, northern Brazil, sampled in September, January and April, between 2008 and 2010, at three different distances from a tidal channel (2, 10, 20 m). In each forest, five logs (diameter/length: 10/40 cm) were randomly selected at each distance, totalling 15 logs per sampling date. The macrofauna was removed, counted and identified. Three-way analysis of variance was used to compare mean numbers of individuals, numbers of taxa and Berger–Parker dominance per log, between forests and among sampling dates and distances from the tidal channel. Non-metric multidimensional scaling and permutational multivariate analyses of variance were used to investigate macrofaunal structure in relation to the three factors. A total of 5437 individuals from both estuarine and terrestrial faunas was found in both forests, with 85 taxa distributed among Mollusca, Annelida, Arthropoda and Nemertea. Abundance increased from September through January to April in both mangrove forests. The most dominant species was Neoteredo reynei, representing 48% of total abundance. No significant difference in any variable was found among the two forests and between the three distances. Logs may represent a stable microhabitat for the macrofauna, with little variation in humidity, salinity or temperature, despite different distances from the tidal channel. However, macrofaunal structure varied significantly between forests and among sampling dates, probably due to seasonal differences in precipitation and salinity between both locations.


Sign in / Sign up

Export Citation Format

Share Document