scholarly journals Membrane-Supported Layered Coordination Polymer as an Advanced Sustainable Catalyst for Desulfurization

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2404
Author(s):  
Fátima Mirante ◽  
Ricardo F. Mendes ◽  
Rui G. Faria ◽  
Luís Cunha-Silva ◽  
Filipe A. Almeida Paz ◽  
...  

The application of a catalytic membrane in the oxidative desulfurization of a multicomponent model diesel formed by most refractory sulfur compounds present in fuel is reported here for the first time. The catalytic membrane was prepared by the impregnation of the active lamellar [Gd(H4nmp)(H2O)2]Cl·2H2O (UAV-59) coordination polymer (CP) into a polymethyl methacrylate (PMMA, acrylic glass) supporting membrane. The use of the catalytic membrane in the liquid–liquid system instead of a powder catalyst arises as an enormous advantage associated with the facility of catalyst handling while avoiding catalyst mass loss. The optimization of various parameters allowed to achieve a near complete desulfurization after 3 h under sustainable conditions, i.e., using an aqueous H2O2 as oxidant and an ionic liquid as extraction solvent ([BMIM]PF6, 1:0.5 ratio diesel:[BMIM]PF6). The performance of the catalytic membrane and of the powdered UAV-59 catalyst was comparable, with the advantage that the former could be recycled successfully for a higher number of desulfurization cycles without the need of washing and drying procedures between reaction cycles, turning the catalytic membrane process more cost-efficient and suitable for future industrial application.

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 731
Author(s):  
Fátima Mirante ◽  
Ricardo F. Mendes ◽  
Filipe A. Almeida Paz ◽  
Salete S. Balula

An ionic lamellar coordination polymer based on a flexible triphosphonic acid linker, [Gd(H4nmp)(H2O)2]Cl2 H2O (1) (H6nmp stands for nitrilo(trimethylphosphonic) acid), presents high efficiency to remove sulfur and nitrogen pollutant compounds from model diesel. Its oxidative catalytic performance was investigated using single sulfur (1-BT, DBT, 4-MDBT and 4,6-DMDBT, 2350 ppm of S) and nitrogen (indole and quinolone, 400 ppm of N) model diesels and further, using multicomponent S/N model diesel. Different methodologies of preparation followed (microwave, one-pot, hydrothermal) originated small morphological differences that did not influenced the catalytic performance of catalyst. Complete desulfurization and denitrogenation were achieved after 2 h using single model diesels, an ionic liquid as extraction solvent ([BMIM]PF6) and H2O2 as oxidant. Simultaneous desulfurization and denitrogenation processes revealed that the nitrogen compounds are more easily removed from the diesel phase to the [BMIM]PF6 phase and consequently, faster oxidized than the sulfur compounds. The lamellar catalyst showed a high recycle capacity for desulfurization. The reusability of the diesel/H2O2/[BMIM]PF6 system catalyzed by lamellar catalyst was more efficient for denitrogenation than for desulfurization process using a multicomponent model diesel. This behavior is not associated with the catalyst performance but it is mainly due to the saturation of S/N compounds in the extraction phase.


2020 ◽  
Vol 1010 ◽  
pp. 418-423
Author(s):  
Nor Atiq Syakila Mohd Nazmi ◽  
Wan Nazwanie Wan Abdullah ◽  
Farook Adam ◽  
Wan Nur Aini Wan Mokhtar ◽  
Noor Fatimah Yahaya ◽  
...  

— The catalytic oxidative desulfurization (Cat-ODS) process has been introduced as a new technology to achieve ultra-low sulphur levels in diesel fuels. In this study, the performance of the alumina supported iron oxide based catalysts doped with cobalt, synthesized via wet impregnation method on the Cat-ODS of the model diesel with the total sulphur 500ppm was investigated using tert-butyl hydroperoxide (TBHP) as an oxidizing agent and N,N-dimethylformamide as an extraction solvent. A series of dopant was being screened. Co/Fe-Al2O3 (10:90) and Co/Fe-Al2O3 (20:80) prepared at 400°C. Overall, the catalytic activity decreased as dopant ratio increased. Catalyst with 10 wt% of Co was successfully removed 96% of thiophene, 100% of DBT and 92% of 4,6-DMDBT in model diesel. Further investigation, potential catalyst that calcined at 400°C contributed higher sulphur removal compared to the catalyst calcined at 500°C. X-ray diffraction analysis (XRD) result showed that Co/Fe-Al2O3 (10:90) prepared at 400°C was amorphous, while micrograph of the field emission scanning electron microscopy (FESEM) illustrated an inhomogeneous distribution of various particle sizes. The energy dispersive X-ray analysis (EDX) result have confirmed the presence of Fe and Co in all of the prepared catalyst.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5494
Author(s):  
Yan Gao ◽  
Fátima Mirante ◽  
Baltazar de Castro ◽  
Jianshe Zhao ◽  
Luís Cunha-Silva ◽  
...  

A peroxotungstate composite comprising the chromium terephthalate metal–organic framework MIL-101(Cr) and the Venturello peroxotungstate [PO4{WO(O2)2}4]3− (PW4) has been prepared by the impregnation method. The PW4@MIL-101(Cr) composite presents high catalytic efficiency for oxidative desulfurization of a multicomponent model diesel containing the most refractory sulfur compounds present in real fuels (2000 ppm of total S). The catalytic performance of this heterogeneous catalyst is similar to the corresponding homogeneous PW4 active center. Desulfurization efficiency of 99.7% was achieved after only 40 min at 70 °C using H2O2 as an oxidant and an ionic liquid as an extraction solvent ([BMIM]PF6, 2:1 model diesel/[BMIM]PF6). High recycling and reusing capacity was also found for PW4@MIL-101(Cr), maintaining its activity for consecutive oxidative desulfurization cycles. A comparison of the catalytic performance of this peroxotungstate composite with others previously reported tungstate@MIL-101(Cr) catalysts indicates that the presence of active oxygen atoms from the peroxo groups promotes a higher oxidative catalytic efficiency in a shorter reaction time.


2019 ◽  
Vol 149 (7) ◽  
pp. 1888-1893 ◽  
Author(s):  
Lulu Sun ◽  
Ting Su ◽  
Pengcheng Li ◽  
Jiajia Xu ◽  
Naimeng Chen ◽  
...  

2013 ◽  
Vol 138-139 ◽  
pp. 79-83 ◽  
Author(s):  
Hongying Lü ◽  
Wanzhong Ren ◽  
Weiping Liao ◽  
Wei Chen ◽  
Yang Li ◽  
...  

2014 ◽  
Vol 54 (4) ◽  
pp. 316-322 ◽  
Author(s):  
E. V. Rakhmanov ◽  
S. V. Baranova ◽  
Zixiao Wang ◽  
A. V. Tarakanova ◽  
S. V. Kardashev ◽  
...  

KIMIKA ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 2-7
Author(s):  
Harold Henrison C. Chiu ◽  
Susan D. Arco ◽  
Zhang Chun Ping ◽  
Nelson R. Villarante

The oxidative desulfurization of model oil (hexane solution of thiophene) was carried out at room temperature in a two-step method involving: 1) the acetic acid catalyzed oxidation of thiophene with hydrogen peroxide and 2) the subsequent extraction of the oxidized products with  three  1-alkyl-3-methylimidazolium  bromide  [RMIM]Br  ionic  liquids  of  varying  alkyl substituent R chain length  (R: C2, C4,  C6) and with acetonitrile as control. For purposes of comparison,  a  non-oxidative  extractive  desulfurization  of  model  oil  with  the  above  ionic liquid and with acetonitrile was also performed.  The thiophene extraction efficiencies of the ionic liquids and that of the control in both the oxidative and non-oxidative procedures were determined  by  means  of  gas  chromatography.  The  ionic  liquid  of  the  shortest  alkyl substituent chain length (R: C2), [EMIM] Br exhibited the highest extraction efficiency in the oxidative desulfurization of the model  oil; the extraction efficiency of [EMIM] Br was also observed  to  exceed  that  of  acetonitrile.  In  general,  the  oxidative  desulfurization  with  the above [RMIM]Br’s is apparently a more efficient method of thiophene removal from the model oil as compared to a non-oxidative procedure with the same extraction solvents. The extraction efficiency of [RMIM]Br’s was observed to decrease with the lengthening of the alkyl  substituent  chain.  The  same  trend  is  observed  in  the  non-oxidative  extractive desulfurization of the model oil. Recyclability analysis of [EMIM]Br showed that [EMIM]Br can be recycled thrice with no significant decrease in extraction efficiency.


SynOpen ◽  
2020 ◽  
Vol 04 (01) ◽  
pp. 01-11
Author(s):  
Cengiz Azap ◽  
Anna Christoffers ◽  
Renat Kadyrov

A convenient, large-scale, and cost-efficient synthesis of 4,5-diarylsubstituted N,N-diarylimidazolium salts is described. A variety of 1,3,4,5-tetraaryl imidazolium salts with increasing electron donation and steric bulk of the N-aryl groups was synthesized in good yields. In the key step, readily available N,N′-diarylthioureas and benzoin/anisoin are coupled to give imidazole-2-thiones, followed by imidazolium salt formation by oxidative desulfurization. In this way, N,N-diarylimidazolium salts with 2-methoxy, 2-methyl, and 2-isopropyl substituents could be obtained; the synthesis of their 2-tert-butyl, 2,6-dimethyl, and 2,6-diisopropyl analogues failed.


Sign in / Sign up

Export Citation Format

Share Document