scholarly journals Green Synthesized Silver Nanoparticles Immobilized on Activated Carbon Nanoparticles: Antibacterial Activity Enhancement Study and Its Application on Textiles Fabrics

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).

2021 ◽  
Author(s):  
Amalanathan.M ◽  
Aravind.M ◽  
Sony Michael Mary.M ◽  
Razan A. Alshgari ◽  
Asma A. Alothman ◽  
...  

Abstract In this work, jasmine flower derived activated carbon were successfully synthesized by hydrothermal carbonization process at the different annealing temperature. The Crystallinity, phase, structural, morphological and optical properties of activated carbon were investigated using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and UV-visible spectroscopy analysis. The graphitic phase of carbon was obtained from the XRD pattern. Surface morphology reveals irregular-shaped nanoparticles. The photodegradation of methylene blue (MB) was carried out under the visible light irradiation technique to study its photocatalytic activity. The activated carbon obtained at 400oC, 500oC and 600oC shows a photocatalytic degradation efficiency of 86%, 90%, and 94%, respectively. Antibacterial activity of activated carbon was examined against S. Aureus (MTCC-737) and E-Coli (MTCC- 443) microbial pathogens, and their potent antibacterial activity was examined from the zone of inhibition layer.


2015 ◽  
Vol 114 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
Devakumar Dinesh ◽  
Kadarkarai Murugan ◽  
Pari Madhiyazhagan ◽  
Chellasamy Panneerselvam ◽  
Palanisamy Mahesh Kumar ◽  
...  

2018 ◽  
Vol 7 (3) ◽  
pp. 1570
Author(s):  
Nguyen Phung Anh ◽  
Truong Thi Ai Mi ◽  
Duong Huynh Thanh Linh ◽  
Nguyen Thi Thuy Van ◽  
Hoang Tien Cuong ◽  
...  

A rapid way of synthesizing silver nanoparticles (AgNPs) by treating Ag+ ions with a green Fortunella Japonica (F.J.) extract as a combined reducing and stabilizing agent was investigated. The reaction solutions were monitored using UV-Vis spectroscopy, the size and shape of crystals were determined by scanning electron microscopy and transmission electron microscopy, the crystalline phases of AgNPs were presented by X–ray diffraction, and the relation of nanoparticles with Fortunella Japonica extract was confirmed using fourier transform infrared spectroscopy. The results indicated that no formation of AgNPs had taken place in the dark during 24 hours at room temperature and 40 oC. Meanwhile, it was found that the rate of AgNPs formation increased rapidly under the sunlight. The effects of the synthesis factors on the AgNPs formation were investigated. The suitable conditions for the synthesis of AgNPs using F.J. extract were determined as follows: F.J. extract was mixed with AgNO3 1.75 mM solution with the volume ratio of 3.5 AgNO3 solution/1.5 F.J. Extract, stirred 300 rpm for 150 minutes at 40 oC under sunlight illumination. At these conditions, AgNPs showed high crystalline structure with the average size of 15.9 nm. The antibacterial activity of silver nanoparticles was determined by agar well diffusion method against E. coli and B. subtilis bacteria. The green synthesized AgNPs performed high antibacterial activity against both bacteria.  


Molekul ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Is Fatimah ◽  
Nur Afisa Lintang Mutiara

In this paper, the biosynthesis of silver nanoparticles (AgNPs) using Mimosa pudica extract is discussed. Mimosa pudica leaves extract using water as solvent was used as bio-reductor to an aqueous solution of silver nitrate (AgNO3) and in order to accelerate the reduction, microwave irradiation method was applied. The AgNPs obtained were characterized using UV-Vis spectrophotometry, FTIR spectrophotometry, XRD, SEM-EDX, and particle size analysis based on dynamic scattering method. Effect of preparation method to the formation of AgNPs is also evaluated in antibacterial activity towards E.coli and P. aeruginosa. Rapid and ecofriendly biosynthesis of stable silver nanoparticles was observed in this study. The characterization results and antibacterial assay indicated the uniform and smaller particle size of AgNPs obtained by using microwave method and positively enhance the antibacterial activity against tested bacteria. 


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Manal A. Awad ◽  
W. K. Mekhamer ◽  
Nada M. Merghani ◽  
Awatif A. Hendi ◽  
Khalid M. O. Ortashi ◽  
...  

A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs). The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3). The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS). The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS) nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) in addition to Transmission Electron Microscopy (TEM). The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteriaEscherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteriaStaphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.


2020 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Gabriele Meroni ◽  
Joel F. Soares Filipe ◽  
Piera A. Martino

Silver nanoparticles (AgNPs) are promising alternatives to antibiotics. The aims of this study were to produce AgNPs using two biological methods and determine their antibacterial activity against Pseudomonas aeruginosa and Staphylococcus pseudintermedius. AgNPs were biosynthesized from an infusion of Curcuma longa (turmeric) and the culture supernatant of E. coli. Characterization was achieved by ultraviolet-visible spectroscopy and by Transmission Electron Microscopy (TEM). The antibacterial properties of NPs from C. longa (ClAgNPs) and E. coli (EcAgNPs), alone and in combination with carbenicillin and ampicillin, were investigated through the Kirby-Bauer disk diffusion assay and the minimum inhibitory concentration (MIC). Dimensions of NPs ranged from 11.107 ± 2.705 nm (ClAgNPs) to 27.282 ± 2.68 nm (EcAgNPs). Kirby-Bauer and MIC assays showed great antibacterial abilities for both NPs alone and in combination with antibiotics. EcAgNPs alone showed the most powerful antibacterial activities, resulting in MIC values ranging from 0.438 ± 0.18 µM (P. aeruginosa) to 3.75 ± 3.65 µM (S. pseudintermedius) compared to those of ClAgNPs: 71.8 ± 0 µM (P. aeruginosa) and 143.7 ± 0 µM (S. pseudintermedius). The antibiofilm abilities were strain-dependent, but no statistical differences were found between the two NPs. These results suggest the antibacterial potential of AgNPs for the treatment of infectious diseases.


2015 ◽  
Vol 1125 ◽  
pp. 33-37
Author(s):  
Hye Jin Bae ◽  
Bo Kyung Lee ◽  
Hae Ryul Ok ◽  
Byung Ho Choi

A nano-sized zeolite has been prepared in an autoclave, using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH) and H2O at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the size of the nano-sized powders was revealed to be 10–300 nm and its distribution was uniform and spherical, depending on the hydrothermal temperature. X-ray diffraction analysis confirmed that the nano-sized powder was the silicalite-1 zeolite. A coating sol could be prepared by the proper combination of these nanoparticles with a solvent. The resulting coating on the glass substrate showed an antireflection effect, with less than 2–3% average reflectance over the visible range. In addition, the effect of silver nanoparticles in the silicalite-1 zeolite on antibacterial performances was carried as a function of the amount of nano-sized silver used. With increasing amounts of nano-sized silver, the number of colony forming unit decreased and became almost to zero.


2008 ◽  
Vol 47-50 ◽  
pp. 1080-1083 ◽  
Author(s):  
H.J. Lee ◽  
M.A. Do ◽  
E.J. Kim ◽  
J.H. Yeum ◽  
H.D. Ghim ◽  
...  

Ultra-small and well dispersed silver nanoparticles were prepared by mixing AgNO3 in PEI (polyethylenimine) solution. Particle size analysis and transmission electron microscopy confirmed that the average diameters of PEI/silver nanoparticles are 20-40 nm. The ultra-small silver nanoparticles had an antimicrobial activity in the aqueous solution at the concentration over 0.0105% by M.I.C test. Suggestively, the PEI/silver nanoparticles have potentials for development of wound dressings.


Author(s):  
F. A. Ekaji ◽  
C. O. Akujobi ◽  
S. I. Umeh

Aims: To optimize effects of selected process parameters affecting yield of green synthesized silver nanoparticles and their antibacterial activity. Study Design: Study was designed with 3 factors Box Behnken Design (Minitab 17) and Response optimizer (Minitab 17) was used to determine optimum values of the factors. Place and Duration of Study: Department of Microbiology, Federal University of Technology, Owerri, Nigeria, from March to November, 2020. Methodology: After extraction by boiling, qualitative phytochemical analysis of leaves’ extracts of Ipeoma batatas, Commelina africana and Manihot esculenta was carried out. Following synthesis of silver nanoparticles as prescribed by Box Behnken design, yield of AgNPs was optimized with Response optimizer (Minitab 17). Then antibacterial activity of resulting AgNPs was tested against isolates of P. aeruginosa and E. coli. Results: Extracts contained alkaloids, tannins, proteins and amino acids, flavonoids and phenolic compounds, but no sterols and cardiac glycosides. Optimum pH, temperature and time obtained with Response Optimizer resulted in 62.6%, 55.8% and 54.9% increase in yield of AgNPs, with leaf extracts of C. africana, M. esculenta and I. batatas respectively, compared to un-optimized conditions. Absorbance for resulting AgNPs peaked between 380 to 400 nm. Zones of inhibition (mm) of P. aeruginosa with AgNPs synthesized using extracts of C. africana, I. batatas and M. esculenta were 10, 10 and 9 respectively, under un-optimized condition, and 12, 10 and 8 respectively, for optimized conditions. Against E. coli, they were 11, 11 and 12 for AgNPs synthesized with extracts of C. africana, I. batatas and M. esculenta respectively, under un-optimized condition, and 13, 9 and 11 respectively, for optimized conditions. Conclusion: Leaf extracts of C. africana, I. batatas and M. esculenta can be used in synthesizing AgNPs, with marked antibacterial activities. Box Behnken design is useful for optimization of effects of process parameters.


2021 ◽  
pp. 1330-1341
Author(s):  
Mbarga M. J. Arsène ◽  
I. V. Podoprigora ◽  
Anyutoulou K. L. Davares ◽  
Marouf Razan ◽  
M. S. Das ◽  
...  

Background and Aim: The gradual loss of efficacy of conventional antibiotics is a global issue. Plant material extracts and green-synthesized nanoparticles are among the most promising options to address this problem. Therefore, the aim of this study was to assess the antibacterial properties of aqueous and hydroalcoholic extracts of grapefruit peels as well as their inclusion in green-synthesized silver nanoparticles (AgNPs). Materials and Methods: Aqueous and hydroalcoholic extracts (80% v/v) were prepared, and the volume and mass yields were determined. The synthesis of AgNPs was done in an eco-friendly manner using AgNO3 as a precursor. The nanoparticles were characterized by ultraviolet–vis spectrometry and photon cross-correlation spectroscopy. The antibacterial activity of the extracts was tested on three Gram-positive bacteria (Staphylococcus aureus ATCC 6538, clinical Enterococcus faecalis, and S. aureus) and two Gram-negative bacteria (two clinical Escherichia coli) using various concentrations of extracts (100, 50, 25, 12, and 5 mg/mL and 5% dimethyl sulfoxide as negative control). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microdilution method. Modulation of cefazoline and ampicillin on resistant E. coli and S. aureus strains was added to the mixture design response surface methodology with extreme vertices design, with the diameters of inhibition and the fractional inhibitory concentration index as responses and factors, respectively. The antibiotic, the ethanolic extract, and water varied from 0.1 MIC to 0.9 MIC for the first two and from 0 to 0.8 in proportion for the third. Validating the models was done by calculating the absolute average deviation, bias factor, and accuracy factor. Results: The volume yield of the EE and aqueous extract (AE) was 96.2% and 93.8% (v/v), respectively, whereas their mass yields were 7.84% and 9.41% (m/m), respectively. The synthesized AgNPs were very uniform and homogeneous, and their size was dependent on the concentration of AgNO3. The antibacterial activity of the two extracts was dose-dependent, and the largest inhibition diameter was observed for the Gram-positive bacteria (S. aureus ATCC 6538; AE, 12; EE, 16), whereas AgNPs had a greater effect on Gram-negative bacteria. The MICs (mg/mL) of the AEs varied from 3.125 (S. aureus ATCC 6538) to 12.5 (E. coli 1 and E. coli 2), whereas the MICs of the EEs varied from 1.5625 (S. aureus 1, S. aureus ATCC 6538, and E. faecalis) to 6.25 (E. coli 1). There was a significant difference between the MICs of AEs and EEs (p=0.014). The MBCs (mg/mL) of the AEs varied from 12.5 (S. aureus ATCC 6538) to 50 (S. aureus 1), whereas those of the EEs varied from 6.25 (S. aureus 1) to 25 (E. coli 1 and E. faecalis). Ethanolic grapefruit extracts demonstrated an ability to modulate cefazolin on E. coli and S. aureus but were completely indifferent to ampicillin on E. coli. Conclusion: Grapefruit peel extracts and their AgNPs exhibit antibacterial properties that can be exploited for the synthesis of new antimicrobials and their EEs may be efficiently used synergistically with other antibiotics against bacteria with intermediate susceptibility.


Sign in / Sign up

Export Citation Format

Share Document