scholarly journals Textile Dye Biodecolorization by Manganese Peroxidase: A Review

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4403
Author(s):  
Yunkang Chang ◽  
Dandan Yang ◽  
Rui Li ◽  
Tao Wang ◽  
Yimin Zhu

Wastewater emissions from textile factories cause serious environmental problems. Manganese peroxidase (MnP) is an oxidoreductase with ligninolytic activity and is a promising biocatalyst for the biodegradation of hazardous environmental contaminants, and especially for dye wastewater decolorization. This article first summarizes the origin, crystal structure, and catalytic cycle of MnP, and then reviews the recent literature on its application to dye wastewater decolorization. In addition, the application of new technologies such as enzyme immobilization and genetic engineering that could improve the stability, durability, adaptability, and operating costs of the enzyme are highlighted. Finally, we discuss and propose future strategies to improve the performance of MnP-assisted dye decolorization in industrial applications.

Author(s):  
Sneha Unnikrishnan ◽  
Nagamani Bora ◽  
Karthikeyan Ramalingam

Synthetic dyes are extensively used in several industries and the dyes are great concern for the ecosystem. During the dyeing process, a certain percentage of the used dye is released into the wastewater, causing severe environmental and health hazards. The physiochemical methods are not sustainable due to high-cost, high-energy requirements and hazardous by-products. Among all the alternative technologies to conventional wastewater treatment, bioremediation has emerged as the most desirable approach to clean up the environment and to restore its original status. The ability of microbes in decolorizing the textile effluents is significant. The decolorization can be further enhanced using immobilization techniques. Immobilization increases the stability and reusability of the microorganisms. The microorganisms can be entrapped in calcium alginate beads, that can be used to construct a packed bed reactor in which dye decolorization can be carried out on a large scale. Thus, bioremediation serves as an effective, eco-friendly solution for the pollution caused by textile dye effluents.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


2005 ◽  
Vol 04 (01) ◽  
pp. 117-126
Author(s):  
N. L. MA ◽  
P. WU

Using density functional theory, we predicted the solution structure of the hydrolyzed 3–aminopropyltriethoxysilane (h–APS), which is a silane coupling agent commonly used in many industrial applications. We have located five stable minima on the potential energy surface of h–APS in which four of them are "neutral", and the remaining one is zwitterionic (dipolar) in nature. Our calculations suggested that the stability of the most stable form of h–APS in water (denoted as II_N) arose from strong intramolecular OH ⋯ N hydrogen bond. The least stable form is the zwitterionic form (I_ZW), which is estimated to be over 90 kJ mol -1 less stable than II_N. The factors governing the relative stabilities of different forms are discussed.


2009 ◽  
Vol 60 (6) ◽  
pp. 1565-1574 ◽  
Author(s):  
S. Nilratnisakorn ◽  
P. Thiravetyan ◽  
W. Nakbanpote

Textile wastewater is contaminated by reactive dye causing unattractive levels of wastewater color, high pH and high salt content when discharged into public water systems. Decolorization of textile wastewater by plant, phytoremediation, is an alternative, sustainable method which is suitable for long term operation. Narrow-leaved cattails are one species of wetland plant with efficiency for decolorizing and remediating textile wastewater. In addition, chemical oxygen demand (COD) can be lowered and dye residue can be removed. The plant also showed a good salt tolerance even after being exposed to a salt solution for 15 days. The narrow-leaved cattails were set up in a constructed wetland model with a vertical flow system operating from bottom to top for synthetic reactive dye wastewater (SRDW) removal. Narrow-leaved cattails could achieve the removal of SRDW at approximately 0.8 gSRDW m−2 day−1. Decolorization of SRDW by this plant was approximately 60%. The advantage of this method is that it is suitable for textile wastewater management and improvement of wetland. These plants could lower COD, remove dye, sodium and total dissolved solids (TDS) whereas other biological and chemical methods could not remove TDS and dye in the same time. These results suggested that the spongy cell structure of this plant has the ability to absorb large amounts of water and nutrients. Physico-chemical analysis revealed increasing amounts of sulfur, silicon, iron and calcium in the plant leafs and roots after exposure to wastewater. Proteins or amide groups in the plant might help in textile dye removal. Regarding decolorization, this plant accumulates dye in the intercellular space and still grows in this SRDW condition. Hence, it can be noted here that narrow-leaved cattails are efficient for textile dye wastewater treatment.


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Mikel Zubizarreta ◽  
Jaione Ganzarain ◽  
Jesús Cuadrado ◽  
Rafael Lizarralde

Firms must adapt to a business environment in constant flux. Economic and political factors and the constant interruption of new technologies force firms and organizations to change and to adapt, so that they are not left behind. Over recent years, the development of disruptive innovations has completely revolutionized past scenarios. These innovations break with what is already established and firms from various sectors face no choice other than to incorporate them into their project management portfolios, so as to ensure survival and business sustainability. Using MIVES methodology as its foundation, a business sustainability management model is presented in this paper for the management of disruptive innovation projects that a firm may wish to develop within a given sector. The management model is designed to facilitate disruptive innovation project management for firms within technological-industrial sectors, by assessing the sustainability of the project. The model is applied to two firms, one from the machine-tooling sector and another from the construction sector. Finally, a sensitivity analysis was performed, the results of which verified the validity and the stability of the proposed model.


2012 ◽  
Vol 3 (1) ◽  
pp. 41-48 ◽  
Author(s):  
S. Sathian ◽  
G. Radha ◽  
V. Shanmugapriya ◽  
M. Rajasimman ◽  
C. Karthikeyan

2018 ◽  
Vol 41 (8) ◽  
pp. 2352-2364 ◽  
Author(s):  
Arif Iqbal ◽  
Girish Kumar Singh

Owing to the superior properties and stable operation, the Permanent Magnet Synchronous Motor (PMSM) is preferably used in wide industrial applications. But, the stability of motor is found to be dependent on its initial operating condition, showing the chaotic characteristic. Therefore, this paper addresses the chaos control of PMSM by developing four simple but effective controllers, which are mathematically designed by using the principle of Lyapunov’s method for asymptotic global stability. A comparative performance assessment has been carried out for the developed controllers in terms of settling time and peak over shoot. Furthermore, the concept of conventional proportional-integration type controller has been extended to develop two more controllers for chaos control of PMSM. Numerical simulation has been carried out in Matlab environment for performance evaluation of developed controllers. The obtained analytical results have been validated through experimental implementation in real time environment on Multisim/Ultiboard platform.


RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16542-16552 ◽  
Author(s):  
Zhou Fang ◽  
Sichao Cheng ◽  
Hui Wang ◽  
Xian Cao ◽  
Xianning Li

Microbial fuel cells (MFCs) were embedded into constructed wetlands to form microbial fuel cell coupled constructed wetlands (CW-MFCs) and were used for simultaneous azo dye wastewater treatment and bioelectricity generation.


1994 ◽  
Vol 40 (3) ◽  
pp. 192-197 ◽  
Author(s):  
Matthias Bergbauer ◽  
Claudia Eggert

A bleachery effluent from a sulfite process pulp mill, which was extracted with alkali and treated with oxygen and hydrogen peroxide (EOP), was treated with two fungi, Trametes versicolor and Stagonospora gigaspora. Trametes versicolor did not cause any depolymerization or degradation of effluent lignins but increased the amount of chromophores, whereas S. gigaspora depolymerized the EOP lignins and caused a substantial reduction in aromatic compounds. For both fungal treatments, CuO oxidation caused a decrease in the yield of the aldehydes within the vanillyl and p-hydroxy phenol families, which was faster than the rates of decrease in the yields of the corresponding acids and ketones. However, only S. gigaspora caused changes in the pattern of the 11 characteristic lignin phenols produced by CuO oxidation, reflecting a preferential metabolism of some phenolic precursors. This fungus decreased the yield of total vanillyl phenols (V), which contributed the bulk of the 11 lignin oxidation products, from 93% initially to 59%. As a consequence, coumaryl (C), syringyl (S), and p-hydroxy phenols (P) became relatively enriched to 1.2, 6.5, and 33%, respectively. The stability of EOP-lignin constituent subunits is S > P > C > V. The two fungi differed significantly in their level of enzyme activities. In effluent-free medium, the ratio of laccase to peroxidase was higher for T. versicolor than for S. gigaspora. The presence of EOP-lignins significantly increased this ratio. No lignin peroxidase was detected but manganese peroxidase and laccase were detected during degradation activities.Key words: lignin phenols, CuO oxidation, laccase, manganese peroxidase, Trametes versicolor, Stagonospora gigaspora


Sign in / Sign up

Export Citation Format

Share Document