scholarly journals Synthesis, Structural and Physicochemical Characterization of a Titanium(IV) Compound with the Hydroxamate Ligand N,2-Dihydroxybenzamide

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5588
Author(s):  
Stamatis S. Passadis ◽  
Sofia Hadjithoma ◽  
Panagiota Siafarika ◽  
Angelos G. Kalampounias ◽  
Anastasios D. Keramidas ◽  
...  

The siderophore organic ligand N,2-dihydroxybenzamide (H2dihybe) incorporates the hydroxamate group, in addition to the phenoxy group in the ortho-position and reveals a very rich coordination chemistry with potential applications in medicine, materials, and physical sciences. The reaction of H2dihybe with TiCl4 in methyl alcohol and KOH yielded the tetranuclear titanium oxo-cluster (TOC) [TiIV4(μ-O)2(HOCH3)4(μ-Hdihybe)4(Hdihybe)4]Cl4∙10H2O∙12CH3OH (1). The titanium compound was characterized by single-crystal X-ray structure analysis, ESI-MS, 13C, and 1H NMR spectroscopy, solid-state and solution UV–Vis, IR vibrational, and luminescence spectroscopies and molecular orbital calculations. The inorganic core Ti4(μ-O)2 of 1 constitutes a rare structural motif for discrete TiIV4 oxo-clusters. High-resolution ESI-MS studies of 1 in methyl alcohol revealed the presence of isotopic distribution patterns which can be attributed to the tetranuclear clusters containing the inorganic core {Ti4(μ-O)2}. Solid-state IR spectroscopy of 1 showed the presence of an intense band at ~800 cm−1 which is absent in the spectrum of the H2dihybe and was attributed to the high-energy ν(Ti2–μ-O) stretching mode. The ν(C=O) in 1 is red-shifted by ~10 cm−1, while the ν(N-O) is blue-shifted by ~20 cm−1 in comparison to H2dihybe. Density Functional Theory (DFT) calculations reveal that in the experimental and theoretically predicted IR absorbance spectra of the ligand and Ti-complex, the main bands observed in the experimental spectra are also present in the calculated spectra supporting the proposed structural model. 1H and 13C NMR solution (CD3OD) studies of 1 reveal that it retains its integrity in CD3OD. The observed NMR changes upon addition of base to a CD3OD solution of 1, are due to an acid–base equilibrium and not a change in the TiIV coordination environment while the decrease in the complex’s lability is due to the improved electron-donating properties which arise from the ligand deprotonation. Luminescence spectroscopic studies of 1 in solution reveal a dual narrow luminescence at different excitation wavelengths. The TOC 1 exhibits a band-gap of 1.98 eV which renders it a promising candidate for photocatalytic investigations.

2010 ◽  
Vol 66 (5) ◽  
pp. 527-543 ◽  
Author(s):  
Leonardo Lo Presti ◽  
Raffaella Soave ◽  
Mariangela Longhi ◽  
Emanuele Ortoleva

Polymorphism in the highly flexible organic Schiff-base macrocycle ligand 3,6,9,17,20,23-hexa-azapentacyclo(23.3.1.111,15.02,6.016,20)triaconta-1(29),9,11,13,15(30),23,25,27-octaene (DIEN, C24H30N6) has been studied by single-crystal X-ray diffraction and both solid-state and gas-phase density functional theory (DFT) calculations. In the literature, only solvated structures of the title compound are known. Two new polymorphs and a new solvated form of DIEN, all obtained from the same solvent with different crystallization conditions, are presented for the first time. They all have P\bar 1 symmetry, with the macrocycle positioned on inversion centres. The two unsolvated polymorphic forms differ in the number of molecules in the asymmetric unit Z′, density and cohesive energy. Theoretical results confirm that the most stable form is (II°), with Z′ = 1.5. Two distinct molecular conformations have been found, named `endo' or `exo' according to the orientation of the imine N atoms, which can be directed towards the interior or the exterior of the macrocycle. The endo arrangement is ubiquitous in the solid state and is shared by two independent molecules which constitute an invariant supramolecular synthon in all the known crystal forms of DIEN. It is also the most stable arrangement in the gas phase. The exo form, on the other hand, appears only in phase (II°), which contains both the conformers. Similarities and differences among the occurring packing motifs, as well as solvent effects, are discussed with the aid of Hirshfeld surface fingerprint plots and correlated to the results of the energy analysis. A possible interconversion path in the gas phase between the endo and the exo conformers has been found by DFT calculations; it consists of a two-step mechanism with activation energies of the order of 30–40 kJ mol−1. These findings have been related to the empirical evidence that the most stable phase (II°) is also the last appearing one, in accordance with Ostwald's rule.


Author(s):  
W. A. Chiou ◽  
N. L. Jeon ◽  
Genbao Xu ◽  
M. Meshii

For many years amorphous metallic alloys have been prepared by rapid quenching techniques such as vapor condensation or melt quenching. Recently, solid-state reactions have shown to be an alternative for synthesizing amorphous metallic alloys. While solid-state amorphization by ball milling and high energy particle irradiation have been investigated extensively, the growth of amorphous phase by cold-rolling has been limited. This paper presents a morphological and structural study of amorphization of Cu and Ti foils by rolling.Samples of high purity Cu (99.999%) and Ti (99.99%) foils with a thickness of 0.025 mm were used as starting materials. These thin foils were cut to 5 cm (w) × 10 cm (1), and the surface was cleaned with acetone. A total of twenty alternatively stacked Cu and Ti foils were then rolled. Composite layers following each rolling pass were cleaned with acetone, cut into half and stacked together, and then rolled again.


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1171
Author(s):  
Halina Kaczmarek ◽  
Patryk Rybczyński ◽  
Piotr Maćczak ◽  
Aleksander Smolarkiewicz-Wyczachowski ◽  
Marta Ziegler-Borowska

Chitosan was used as a protective matrix for the photosensitive dye-squaraine (2,4-bis[4-(dimethylamino)phenyl]cyclobutane-1,3-diol). The physicochemical properties of the obtained systems, both in solution and in a solid-state, were investigated. However, it was found that diluted chitosan solutions with a few percent additions of dye show an intense fluorescence, which is suppressed in the solid-state. This is related to the morphology of the heterogeneous modified chitosan films. The important advantage of using a biopolymer matrix is the prevention of dye degradation under the influence of high energy ultraviolet (UV) radiation while the dye presence improves the chitosan heat resistance. It is caused by mutual interactions between macromolecules and dye. Owing to the protective action of chitosan, the dye release in liquid medium is limited. Chitosan solutions with a few percent additions of squaraine can be used in biomedical imaging thanks to the ability to emit light, while chitosan films can be protective coatings resistant to high temperatures and UV radiation.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27801-27811
Author(s):  
M. Vandana ◽  
Y. S. Nagaraju ◽  
H. Ganesh ◽  
S. Veeresh ◽  
H. Vijeth ◽  
...  

Representation of the synthesis steps of SnO2QDs/GO/PPY ternary composites and SnO2QDs/GO/PPY//GO/charcoal asymmetric supercapacitor device.


Sign in / Sign up

Export Citation Format

Share Document