scholarly journals DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6188
Author(s):  
Francesco Saracino ◽  
João Brinco ◽  
Diana Gago ◽  
Marco Gomes da Silva ◽  
Ricardo Boavida Ferreira ◽  
...  

Protein haze in white wine is one of the most common non-microbial defects of commercial wines, with bentonite being the main solution utilized by the winemaking industry to tackle this problem. Bentonite presents some serious disadvantages, and several alternatives have been proposed. Here, an alternative based on a new cellulose derivative (dicarboxymethyl cellulose, DCMC) is proposed. To determine the efficiency of DCMC as a bentonite alternative, three monovarietal wines were characterized, and their protein instability and content determined by a heat stability test (HST) and the Bradford method, respectively. The wines were treated with DCMC to achieve stable wines, as shown by the HST, and the efficacy of the treatments was assessed by determining, before and after treatment, the wine content in protein, phenolic compounds, sodium, calcium, and volatile organic compounds (VOCs) as well as the wine pH. DCMC applied at dosages such as those commonly employed for bentonite was able to reduce the protein content in all tested wines and to stabilize all but the Moscatel de Setúbal varietal wine. In general, DCMC was shown to induce lower changes in the wine pH and phenolic content than bentonite, reducing the wine calcium content. Regarding which VOCs are concerned, DCMC produced a general impact similar to that of bentonite, with differences depending on wine variety. The results obtained suggest that DCMC can be a sustainable alternative to bentonite in protein white wine stabilization.

Beverages ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 57
Author(s):  
Diana Gago ◽  
Ricardo Chagas ◽  
Luísa M. Ferreira

Wine clarity is a critical aspect in the commercialization of white wines. The formation of wine haze can be attributed to the aggregation and precipitation of heat-unstable wine proteins. Bentonite fining is the commonly used method in winemaking for protein removal, but it is responsible for loss of wine volume and quality. Dicarboxymethyl cellulose (DCMC) was developed as a potential alternative to bentonite. Water-insoluble DCMC was prepared via catalyzed heterogeneous etherification using sodium chloromalonate and potassium iodide. White wine fining trials were benchmarked with different dosages of DCMC against a bentonite. A high-performance liquid chromatography method was optimized for protein quantification. The samples underwent heat stability tests to evaluate wine turbidity before and after fining. Results show that DCMC successfully reduced the wine protein content and turbidity. DCMC produced heat-stable wines with dosages higher than 0.25 g/L. The innovative application of DCMC in the wine sector shows potential due to its ability to stabilize white wines while overcoming problems associated with bentonite, such as lees production and loss of wine, contributing to a more sustainable process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


Analytica ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 38-49
Author(s):  
Ettore Guerriero ◽  
Massimo Iorizzo ◽  
Marina Cerasa ◽  
Ivan Notardonato ◽  
Bruno Testa ◽  
...  

The paper would like to show a direct injection into GC-MS/QqQ for the determination of secondary aromas in white wine samples fermented in two different ways. The procedure has been compared with more traditional methods used in this field, i.e., headspace analysis and liquid–liquid extraction. The application of such direct injection, for the first time in the literature, allows us to analyze Volatile Organic Compounds (VOCs) in the range 0.1–100 µg mL−1, with Limits of Detection (LODs) and Limits of Quantification (LOQs) between 0.01–0.05 µg mL−1 and 0.03–0.09 µg mL−1, respectively, intraday and interday below 5.6% and 8.5%, respectively, and recoveries above 92% at two different fortification levels. The procedure has been applied to real wine samples: it evidences how the fermentation in wood (cherry) barrel yields higher VOC levels than ones in wine fermented in steel tank, causing production of different secondary aromas and different relative flavors.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Inma Arenas ◽  
Miguel Ribeiro ◽  
Luís Filipe-Ribeiro ◽  
Rafael Vilamarim ◽  
Elisa Costa ◽  
...  

In this work, the effect of pre-fermentative skin maceration (PFSM) on the chemical composition of the macromolecular fraction, polysaccharides and proteins, phenolic compounds, chromatic characteristics, and protein stability of Albariño monovarietal white wines was studied. PFSM increased the extraction of phenolic compounds and polysaccharides and reduced the extraction of pathogenesis-related proteins (PRPs). PFSM wine showed significantly higher protein instability. Sodium and calcium bentonites were used for protein stabilisation of wines obtained with PFSM (+PFSM) and without PFSM (−PFSM), and their efficiencies compared to fungal chitosan (FCH) and k-carrageenan. k-Carrageenan reduced the content of PRPs and the protein instability in both wines, and it was more efficient than sodium and calcium bentonites. FCH was unable to heat stabilise both wines, and PRPs levels remained unaltered. On the other hand, FCH decreased the levels of wine polysaccharides by 60%. Sodium and calcium bentonite also decreased the levels of wine polysaccharides although to a lower extent (16% to 59%). k-Carrageenan did not affect the wine polysaccharide levels. Overall, k-carrageenan is suitable for white wine protein stabilisation, having a more desirable impact on the wine macromolecular fraction than the other fining agents, reducing the levels of the wine PRPs without impacting polysaccharide composition.


2018 ◽  
Vol 18 (13) ◽  
pp. 9527-9545 ◽  
Author(s):  
Qian Xiao ◽  
Mei Li ◽  
Huan Liu ◽  
Mingliang Fu ◽  
Fanyuan Deng ◽  
...  

Abstract. Emissions from ships at berth play an important role regarding the exposure of high density human populations to atmospheric pollutants in port areas; however, these emissions are not well understood. In this study, volatile organic compounds (VOCs) and particle emissions from 20 container ships at berth were sampled and analyzed during the “fuel switch” period at Jingtang Port in Hebei Province, China. VOCs and particles were analyzed using a gas chromatography-mass spectrometer (GC-MS) and a single particle aerosol mass spectrometer (SPAMS), respectively. VOC analysis showed that alkanes and aromatics, especially benzene, toluene and heavier compounds e.g., n-heptane, n-octane and n-nonane, dominated the total identified species. Secondary organic aerosol (SOA) yields and ozone (O3) forming potential were 0.017 ± 0.007 g SOA g−1 VOCs and 2.63 ± 0.37 g O3 g−1 VOCs, respectively. Both positive and negative ion mass spectra from individual ships were derived and the intensity of specific ions were quantified. Results showed that elemental carbon (35.74 %), elemental carbon–organic carbon mixtures (33.95 %) and Na-rich particles (21.12 %) were major classes, comprising 90.7 % of the particles observed. Particles from ship auxiliary engines were in the 0.2 to 2.5 µm size range, with a peak occurring at around 0.4 µm. The issue of using vanadium (V) as tracer element was examined, and it was found that V was not a proper tracer of ship emissions when using low sulfur content diesel oil. The average percentage of sulfate particles observed in shipping emissions before and after switching to marine diesel oil remained unchanged at 24 %. Under certain wind conditions, when berths were upwind of emission sources, the ratios before and after 1 January were 35 and 27 % respectively. The impact of atmospheric stability was discussed based on PM2.5 and primary pollutant (carbon monoxide) concentration. With a background of frequent haze episodes and complex mechanisms of particulate accumulation and secondary formation, the impact of atmospheric stability is believed to have been weak on the sulfate contribution from shipping emissions. The results from this study provide robust support for port area air quality assessment and source apportionment.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1592
Author(s):  
Olga P. Ibragimova ◽  
Anara Omarova ◽  
Bauyrzhan Bukenov ◽  
Aray Zhakupbekova ◽  
Nassiba Baimatova

Air pollution is one of the primary sources of risk to human health in the world. In this study, seasonal and spatial variations of multiple volatile organic compounds (VOCs) were measured at six sampling sites in Almaty, Kazakhstan. The seasonal and spatial variations of 19 VOCs were evaluated in 2020, including the periods before and after COVID-19 lockdown. The concentrations of 9 out of 19 VOCs had been changed significantly (p < 0.01) during 2020. The maximum concentrations of total VOCs (TVOCs) were observed on 15, 17, and 19 January and ranged from 233 to 420 µg m−3. The spatial distribution of TVOCs concentrations in the air during sampling seasons correlated with the elevation and increased from southern to northern part of Almaty, where Combined Heat and Power Plants are located. The sources of air pollution by VOCs were studied by correlations analysis and BTEX ratios. The ranges of toluene to benzene ratio and benzene, toluene, and ethylbenzene demonstrated two primary sources of BTEX in 2020: traffic emissions and biomass/biofuel/coal burning. Most of m-, p-xylenes to ethylbenzene ratios in this study were lower than 3 in all sampling periods, evidencing the presence of aged air masses at studied sampling sites from remote sources.


2020 ◽  
Vol 172 ◽  
pp. 23009
Author(s):  
Miia J. Pitkäranta ◽  
Timo Lehtimaa

This paper presents a renovation case study of a multi-storey building with initially elevated indoor air concentrations of 2-ethyl-1-hexanol and C9-C10 alcohols originating from PVC flooring. The main aim of the study was to determine the effectivity of renovation that included the use of a novel renovation material, cTrap adsorption cloth, in reducing the surface emissions and indoor air concentrations of the named compounds. Indoor air concentrations and surface emission rates of volatile organic compounds (VOC) were measured in the case building before and after renovation according to ISO16000-6 and NT Build 484 standards. The results show that the measured indoor air concentrations of the alcohols decreased to ca. 1/10 of the original concentration, and the surface emission rates dropped below the determination limit after the renovation.


2005 ◽  
Vol 68 (3) ◽  
pp. 534-537 ◽  
Author(s):  
L. H. McKEE ◽  
L. NEISH ◽  
A. POTTENGER ◽  
N. FLORES ◽  
K. WEINBRENNER ◽  
...  

The effect of 15 consumable products, including juices, wines, and vinegar, used as rinsing agents on microbial loads of retail skinless, boneless chicken breasts was evaluated in two studies. Ten breasts were rinsed for 1 min with each solution. Samples were swabbed before and after rinsing with a cellulose sponge and evaluated for total aerobic (APC), total coliform (TCC), and generic Escherichia coli counts by Petrifilm methods. No differences were found in initial APC or TCC in either study, with initial mean APC ranging from 5.30 to 7.05 log CFU/cm2 and initial mean TCC ranging from 2.21 to 3.36 log CFU/cm2. In study 1, the APC for breasts rinsed with distilled white vinegar (3.22 log CFU/cm2) was lower than for those rinsed with all other solutions except cranberry juice cocktail (3.86 log CFU/cm2). The TCC for breasts rinsed with distilled white vinegar (0.00 log CFU/cm2) and cranberry juice cocktail (0.20 log CFU/cm2) were lower than those for all other solutions except 10% NaCl (0.43 log CFU/cm2) and 10% NaHCO3 (0.48 log CFU/cm2). In study 2, APC values for breasts rinsed with red wine (5.29 log CFU/cm2) and white wine (5.32 log CFU/cm2) were lower than for breasts rinsed with the other three solutions. The TCC after rinsing with chicken broth (4.48 log CFU/cm2) was higher than for all other solutions except Italian dressing. Although distilled white vinegar was the most effective rinsing agent, all solutions produced lower counts after rinsing, indicating that consumers could use rinsing to remove microorganisms from chicken breast surfaces prior to cooking.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 621
Author(s):  
Luisa Angiolillo ◽  
Sara Spinelli ◽  
Amalia Conte ◽  
Matteo Alessandro Del Nobile

The aim of the study was to evaluate the efficacy of extract from broccoli byproducts, as a green alternative to chemical preservation strategies for fresh filled pasta. In order to prove its effectiveness, three different percentages (10%, 15%, and 20% v/w) of extract were added to the filling of pasta. A shelf life test was carried out by monitoring microbiological and sensory quality. The content of phenolic compounds before and after in vitro digestion of pasta samples was also recorded. Results underlined that the addition of the natural extract helped to record a final shelf life of about 24 days, that was 18 days longer in respect to the control sample. Furthermore, results highlighted that the addition of byproducts extract to pasta also increased its phenolic content after in vitro digestion. Therefore, broccoli byproducts could be valorized for recording extracts that are able to prolong shelf life and increase the nutritional content of fresh filled pasta.


2019 ◽  
Vol 9 (23) ◽  
pp. 5077
Author(s):  
Aleksandra Sender-Janeczek ◽  
Jacek Zborowski ◽  
Małgorzata Szulc ◽  
Tomasz Konopka

Combination of the classical subgingival instrumentation (scaling and root planing procedure, SRP) with an antibiotic administered to periodontal pockets in a suitable medium is a promising alternative protocol of nonsurgical periodontal treatment. It enables obtaining the long-term minimum drug concentration inhibiting the development of periopathogens. Objectives: Clinical and microbiological evaluation of periodontal pockets two months after single application of a gel containing piperacillin and tazobactam (Gelcide)® in relation to the nonsurgical treatment procedure (SRP). Materials and methods: Ten patients aged 24–56 years (mean 39.5) with chronic periodontitis, nonsmokers with acceptable oral hygiene and no classical exclusion criteria were qualified for treatment. In the maxilla area, SRP was performed and the assessed gel was inserted to two randomly selected adjacent periodontal pockets. Clinical evaluation included the assessment of bleeding on probing (BoP), pocket depth (PD), and clinical attachment loss (CAL) at six measurement points. A microbiological examination with the use of PET deluxe diagnostic kit in the drug-administered pockets and symmetrically in two pockets on the other side of the dental arch was performed. The examination was conducted before the treatment and two months later. Results: Two months after the treatment, a significant improvement in all analyzed clinical parameters was observed. However, the extent of this improvement did not differ significantly between the compared treatment methods. No statistically significant differences were found in the number of bacteria before and after the treatment, except for a significant decrease in the number of Micromonas micros (2957 vs. 589, p = 0.028) and a higher number of the green complex bacteria Capnocytophaga gingivalis (5439 vs. 2050, p = 0.041) after antibiotic had been used. Conclusion: No significant clinical and microbiological differences were found after additional administration of gel with piperacillin and tazobactam in relation to SRP in the preliminary study.


Sign in / Sign up

Export Citation Format

Share Document