scholarly journals New Method for Simultaneous Arsenic and Selenium Speciation Analysis in Seafood and Onion Samples

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6223
Author(s):  
Katarzyna Karaś ◽  
Anetta Zioła-Frankowska ◽  
Marcin Frankowski

This paper presents a new method for the simultaneous speciation analysis of arsenic (As(III)-arsenite, As(V)-arsenate, DMA-dimethylarsinic acid, MMA-methylarsonic acid, and AsB-arsenobetaine) and selenium (Se(IV)-selenite, Se(VI)-selenate, Se-Methionine, and Se-Cystine), which was applied to a variety of seafood and onion samples. The determination of the forms of arsenic and selenium was undertaken using the High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC–ICP–MS) analytical technique. The separation of both organic and inorganic forms of arsenic and selenium was performed using two analytical columns: an anion exchange column, Dionex IonPac AS22, containing an alkanol quaternary ammonium ion, and a double bed cation–anion exchange guard column, Dionex Ion Pac CG5A, containing, as a first layer, fully sulfonated latex for cation exchange and a fully aminated layer for anion exchange as the second layer. The ammonium nitrate, at pH = 9.0, was used as a mobile phase. The method presented here allowed us to separate the As and Se species within 10 min with a suitable resolution. The applicability was presented with different sample matrix types: seafood and onion.

2004 ◽  
Vol 87 (1) ◽  
pp. 233-237 ◽  
Author(s):  
Aleksandra Polatajko ◽  
Joanna Szpunar

Abstract A method was developed for speciation analysis of arsenic in chicken meat. Different procedures were optimized for the recovery of arsenic compounds without destroying the original compounds, and 2 anion-exchange liquid chromatography columns were compared for the separation of arsenic species prior to on-line detection by inductively coupled plasma-mass spectrometry. The 2 species found were dimethylarsinic acid (106 ± 5 ng/g) and arsenobetaine (37 ± 4 ng/g). The stability of arsenic species in a chicken meat candidate reference material for at least 12 months was demonstrated.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2925
Author(s):  
Jędrzej Proch ◽  
Aleksandra Orłowska ◽  
Przemysław Niedzielski

In this work, a methodology for determination of As(III), As(V), dimethylarsinic acid (DMA), Fe(II) and Fe(III) in fifty-eight samples (forty-nine products of thirteen brands from three countries) commercial yerba mate (Ilex paraguariensis) was performed. The hyphenated high performance liquid chromatography inductively coupled plasma optical emission spectrometry (HPLC-ICP OES) technique was used. Arsenic was determined below the quantification limit in 38 samples of yerba mate. As(III) was found at the level 0.09 and 0.08 mg kg−1. The As(V) content was in the range: 0.21 to 0.28 mg kg−1. The content of DMA was found the highest of the three arsenic species in the range: 0.21 to 0.47 mg kg−1. The content of Fe(II) and Fe(III) was found in the range: 0.61 to 15.4 mg kg−1 and 0.66 to 43.1 mg kg−1, respectively and the dominance of Fe(III) was observed. Moreover, total and extractable content of 16 elements were determined. The results have been subjected to statistical analysis in order to establish relationships between samples of the same origin (country), kind (type) and composition (purity).


2004 ◽  
Vol 87 (1) ◽  
pp. 238-243 ◽  
Author(s):  
Marilena D'Amato ◽  
Giovanni Forte ◽  
Sergio Caroli

Abstract A study was undertaken to develop a method for the chemical speciation of As in rice on the basis of current knowledge in this field for use in preparing a certified reference material (CRM). Samples of the Arborio rice variety were ground to a fine powder, which was extracted under sonication with a water–methanol mixture (1 + 1, v/v). The resulting solutions were injected into a high-performance liquid chromatograph combined on-line with a quadrupole inductively coupled plasma–mass spectrometer. This hyphenated system allowed for the quantification of As species in one analytical step. Four forms of As were detected: inorganic As (III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic As (V) at concentrations of 88.2 ± 7.1, 50.8 ± 5.0, 15.2 ± 1.7, and 51.2 ± 3.5 ng/g, respectively. The concentration of total As was 211 ± 7 ng/g. The limits of detection (3σ criterion) and the quantitation (10σ criterion) were, respectively, as follows (in ng/g): As (III), 0.095 and 0.320; As (V), 0.082 and 0.273; MMA, 0.110 and 0.367; and DMA, 0.145 and 0.480. Ten hours were needed for the extraction procedure, 6 h for the evaporation, and 30 min for quantification of the analytes. This investigation was performed in the frame of a European Commission Project on the feasibility of CRMs for As and Se species.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Hongfang Hou ◽  
Wanjing Cui ◽  
Qing Xu ◽  
Zhanhui Tao ◽  
Yafei Guo ◽  
...  

A sensitive and accurate simultaneous continuous analysis for six arsenic species including arsenobetaine (AsB), arsenocholine (AsC), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite (AsIII), and arsenate (AsV) has been developed by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). An anion-exchange column of Hamilton PRP-X100 (Switzerland) was applied for separation of the six arsenic species with gradient elution of 1.25 mmol/L Na2HPO4 and 11.0 mmol/L KH2PO4 as the mobile phase A and 2.5 mmol/L Na2HPO4 and 22.0 mmol/L KH2PO4 as the mobile phase B. The linearity ranges for AsB, AsC, MMA, DMA, AsIII, and AsV were between 0.5 and 50.0 μg/L, and the detection limits of the six arsenic species were all within 0.01–0.35 ng/L. The relative standard deviations (RSDs) were within 2.26–3.68% and the recovery rates of samples ranged from 95 to 103%. The proposed method was applied for the arsenic speciation analysis of sediment pore-water samples, which were taken from the supernatant after centrifugation and filtration.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 241 ◽  
Author(s):  
Qiaoli Shi ◽  
Mingyan Ju ◽  
Xiaoxia Zhu ◽  
Hui Gan ◽  
Ruolan Gu ◽  
...  

A rapid and sensitive method was established for arsenic (As) speciation based on high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). This method was validated for the quantification of four arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) in cynomolgus macaque plasma. Separation was achieved in just 3.7 min with an alkyl reverse phase column and highly aqueous mobile phase containing 20 mM citric acid and 5 mM sodium hexanesulfonate (pH = 4.3). The calibration curves were linear over the range of 5–500 ng·mL−1 (measured as As), with r > 0.99. The above method was validated for selectivity, precision, accuracy, matrix effect, recovery, carryover effect and stability, and applied in a comparative pharmacokinetic study of arsenic species in cynomolgus macaque samples following intravenous and intragastrical administration of arsenic trioxide solution (0.80 mg·kg−1; 0.61 mg·kg−1 of arsenic); in addition, the absolute oral bioavailability of the active ingredient AsIII of arsenic trioxide in cynomolgus macaque samples was derived as 60.9 ± 16.1%.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Abiodun A. Ojo ◽  
Amos Onasanya

The closed anaerobic decomposition extracts of Fucus distichus incubated with seawater and sediment, and without sediment as control, were subjected to extractions and isolation on Sephadex LH 20 and Cellulose Thin Layer Chromatography. The decomposition extracts and isolates were analyzed by using both the Hydride Generation Gas Chromatography Atomic Absorption Spectrometry (HG-GC-AAS) and High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC-ICPMS) to identify the arsenic species in the equilibrium mixtures of the seaweed and filtrates separately. In the methanol seaweed extract, equilibrium mixture of arsenosugars (AS) AS1 and AS2 and their biotransformation products of dimethylarsinoylethanol (DMAE) and dimethylarsinic acid (DMAA) were identified. In the methanol filtrate extract of the mixture, only DMAE and DMAA were identified. However, in the control methanol filtrate extract five organoarsenic species, AS1 and AS2, one unidentified hidden organoarsenic species, DMAE and DMAA were identified in the equilibrium mixture. This result confirmed that the hidden organoarsenic species in Fucus distichus, AS1 and AS2, and an unidentified organoarsenic compounds are biotransformed to only DMAE and DMAA under an anaerobic condition. This also suggests that DMAE and DMAA are strong intermediate candidates for the generation of arsenobetaine, from arsenoribosides in the marine food webs.


Sign in / Sign up

Export Citation Format

Share Document