scholarly journals Addition of Vindoline to p-Benzoquinone: Regiochemistry, Stereochemistry and Symmetry Considerations

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6395
Author(s):  
Shamsher Ali ◽  
Eric Hénon ◽  
Ritchy Leroy ◽  
Georges Massiot

Vindoline and catharanthine are the major alkaloids of Catharanthus roseus and are extracted in large quantities to prepare the pharmaceutically important Vinca type alkaloids vincaleukoblastine, vincristine and navelbine. The higher yield of vindoline relative to catharanthine makes it an attractive substrate for developing new chemistry and adding value to the plant. In this context, we have reacted vindoline with a selection of electrophiles among which benzoquinone. Conditions were developed to optimize the synthesis of a mono-adduct, of five bis-adducts, and of tri-adducts and tetra-adducts, several of these adducts being mixtures of conformational isomers. Copper(II) was added to the reactions to promote reoxidation of the intermediate hydroquinones and simplify the reaction products. The structures were solved by spectroscopic means and by symmetry considerations. Among the bis-isomers, the 2,3-diadduct consists of three unseparable species, two major ones with an axis of symmetry, thus giving a single set of signals and existing as two different species with indistinguishable NMR spectra. The third and minor isomer has no symmetry and therefore exhibits nonequivalence in the signals of the two vindoline moieties. These isomers are designated as syn (minor) and anti (major) and there exists a high energy barrier between them making their interconversion difficult. DFT calculations on simplified model compounds demonstrate that the syn-anti interconversion is not possible at room temperature on the NMR chemical shift time scale. These molecules are not rigid and calculations showed a back-and-forth conrotatory motion of the two vindolines. This “windshield wiper” effect is responsible for the observation of exchange correlations in the NOESY spectra. The same phenomenon is observed with the higher molecular weight adducts, which are also mixtures of rotational isomers. The same lack of rotations between syn and anti isomers is responsible for the formation of four tri-adducts and of seven tetra-adducts. On a biological standpoint, the mono adduct displayed anti-inflammatory properties at the 5 μM level while the di-adducts and tri-adducts showed moderate cytotoxicity against Au565, and HeLa cancer cell lines.

1996 ◽  
Vol 439 ◽  
Author(s):  
C. Degueldre ◽  
P. Heimgartner ◽  
G. Ledergerber ◽  
N. Sasajima ◽  
K. Hojou ◽  
...  

AbstractThe behaviour of ZrO2-10%YO1.5-5%ErO1.5-( 10%ThO2) (At %) cubic solid solutions under low and high energy Xe ion irradiation up to a fluence of 1.8·1016 Xe.cm−2 was investigated by TEM. Low energy (60 keV) Xe ions did not yield amorphization. From the observed bubble formation, swelling values of less than one volume per cent were estimated to be 0.19–0.72% during irradiation at room temperature or at high temperature (925 K). Furthermore, no amorphization was obtained by Xe irradiation under extreme conditions such as high energy (1.5 MeV) Xe ion and low temperature (20 K). This confirms the robustness of this material and argues in favour of the selection of zirconia based material as an advanced nuclear fuel for plutonium disposition.


2021 ◽  
Author(s):  
Kexin Jia ◽  
Xixi Meng ◽  
Mengmeng Wang ◽  
Xiaoshuang Gou ◽  
Yu-Xia Wang ◽  
...  

The energy barrier and hysteresis temperature in two benchtop-stable D5h-symmetry HoIII single-ion magnets were significantly enhanced via the variation of halogen anion. The coexistence of high energy barrier of 418...


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1535
Author(s):  
Yanjie Wang ◽  
Yingjie Zhang ◽  
Hongyu Cheng ◽  
Zhicong Ni ◽  
Ying Wang ◽  
...  

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


Author(s):  
Matilde Fondo ◽  
Julio Corredoira-Vázquez ◽  
Ana M. Garcia-Deibe ◽  
Jesus Sanmartin Matalobos ◽  
Silvia Gómez-Coca ◽  
...  

Dinuclear [M(H3L1,2,4)]2 (M = Dy, Dy2; M = Ho, Ho2) complexes were isolated from an heptadentate aminophenol ligand. The crystal structures of Dy2·2THF, and the pyridine adducts Dy2·2Py and Ho2·2Py,...


2021 ◽  
Vol 11 (14) ◽  
pp. 2003493
Author(s):  
Alex Yong Sheng Eng ◽  
Vipin Kumar ◽  
Yiwen Zhang ◽  
Jianmin Luo ◽  
Wenyu Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


2003 ◽  
Vol 76 (4) ◽  
pp. 876-891 ◽  
Author(s):  
R. N. Datta ◽  
A. G. Talma ◽  
S. Datta ◽  
P. G. J. Nieuwenhuis ◽  
W. J. Nijenhuis ◽  
...  

Abstract The use of thiurams such as Tetramethyl thiuram disulfide (TMTD) or Tetrabenzyl thiuram disulfide (TBzTD) has been explored to achieve higher cure efficiency. The studies suggest that a clear difference exists between the effect of TMTD versus TBzTD. TMTD reacts with Bis (triethoxysilylpropyl) tetrasulfide (TESPT) and this reaction can take place even at room temperature. On the other hand, the reaction of TBzTD with TESPT is slow and takes place only at higher temperature. High Performance Liquid Chromatography (HPLC) with mass (MS) detection, Nuclear Magnetic Resonance Spectroscopy (NMR) and other analytical tools have been used to understand the differences between the reaction of TMTD and TESPT versus TBzTD and TESPT. The reaction products originating from these reactions are also identified. These studies indicate that unlike TMTD, TBzTD improves the cure efficiency allowing faster cure without significant effect on processing characteristics as well as dynamic properties. The loading of TESPT is reduced in a typical Green tire compound and the negative effect on viscosity is repaired by addition of anhydrides, such as succinic anhydride, maleic anhydride, etc.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


Sign in / Sign up

Export Citation Format

Share Document