scholarly journals Identification of Potential Inhibitors of MurD Enzyme of Staphylococcus aureus from a Marine Natural Product Library

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6426
Author(s):  
Xiaoqi Zheng ◽  
Tongyu Zheng ◽  
Yinglin Liao ◽  
Lianxiang Luo

Staphylococcus aureus is an opportunistic pathogen that can cause fatal bacterial infections. MurD catalyzes the formation of peptide bond between UDP-N-acetylehyl-l-alanine and d-glutamic acid, which plays an important role in the synthesis of peptidoglycan and the formation of cell wall by S. aureus. Because S. aureus is resistant to most existing antibiotics, it is necessary to develop new inhibitors. In this study, Schrodinger 11.5 Prime homology modeling was selected to prepare the protein model of MurD enzyme, and its structure was optimized. We used a virtual screening program and similarity screening to screen 47163 compounds from three marine natural product libraries to explore new inhibitors of S. aureus. ADME provides analysis of the physicochemical properties of the best performing compounds during the screening process. To determine the stability of the docking effect, a 100 ns molecular dynamics was performed to verify how tightly the compound was bound to the protein. By docking analysis and molecular dynamics analysis, both 46604 and 46608 have strong interaction with the docking pocket, have good pharmacological properties, and maintain stable conformation with the target protein, so they have a chance to become drugs for S. aureus. Through virtual screening, similarity screening, ADME study and molecular dynamics simulation, 46604 and 46608 were selected as potential drug candidates for S. aureus.

2018 ◽  
Vol 10 (1) ◽  
pp. 235
Author(s):  
Muhammad Teguh Setiawan ◽  
Arry Yanuar

Objective: This study aimed to find the herbal compounds from the database of Indonesian herbs with potential for use as histone deacetylase 2 (HDAC2)enzyme inhibitors through virtual screening using the LigandScout program.Methods: Virtual screening was conducted using LigandScout 4.09.3, AutodockZN, and AutoDockTools.Results: The virtual screening process resulted in 10 compounds with the highest pharmacophore fit score rating, from which five compounds withthe best criteria for molecular dynamics simulations were selected: Boesenbergin B, pongachalcone I, 6,8-diprenylgenistein, marmin, and mangostin.The ΔG values obtained were, respectively, −8.28, −9.15, −7.05, −9.07, and −7.15. The active crystal ligand N-(2-aminophenyl) benzamide was used asa positive control, with ΔG value of −10.27. Molecular dynamic’s simulations showed that the activity of HDAC2 inhibitors was known to interact inthe amino acid residues His145C, Tyr308C, Zn379C, Leu276C, Phe155C, Phe210C, Leu144C, and Met35C.Conclusions: Based on virtual screening and the molecular dynamics simulations, marmin was considered to provide the best overall activity ofanalysis. Simulation analysis of molecular dynamics from hits compound showed that analysis with MMGBSA gave higher free energy binding valuethan MMPBSA.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 29
Author(s):  
Lianxiang Luo ◽  
Ai Zhong ◽  
Qu Wang ◽  
Tongyu Zheng

Background: In the past decade, several antibodies directed against the PD-1/PD-L1 interaction have been approved. However, therapeutic antibodies also exhibit some shortcomings. Using small molecules to regulate the PD-1/PD-L1 pathway may be another way to mobilize the immune system to fight cancer. Method: 52,765 marine natural products were screened against PD-L1(PDBID: 6R3K). To identify natural compounds, a structure-based pharmacophore model was generated, following by virtual screening and molecular docking. Then, the absorption, distribution, metabolism, and excretion (ADME) test was carried out to select the most suitable compounds. Finally, molecular dynamics simulation was also performed to validate the binding property of the top compound. Results: Initially, 13 small marine molecules were screened based on the pharmacophore model. Then, two compounds were selected for further evaluation based on the molecular docking scores. After ADME and toxicity studies, molecule 51320 was selected for further verification. By molecular dynamics analysis, molecule 51320 maintains a stable conformation with the target protein, so it has the chance to become an inhibitor of PD-L1. Conclusions: Through structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET approaches, and molecular dynamics (MD) simulation, the marine natural compound 51320 can be used as a small molecule inhibitor of PD-L1.


2021 ◽  
Vol 14 (9) ◽  
pp. 937
Author(s):  
Danish Iqbal ◽  
Md Tabish Rehman ◽  
Abdulaziz Bin Dukhyil ◽  
Syed Mohd Danish Rizvi ◽  
Mohamed F. Al Ajmi ◽  
...  

Alzheimer’s disease (AD) is a progressive neurological disorder that affects 50 million people. Despite this, only two classes of medication have been approved by the FDA. Therefore, we have planned to develop therapeutics by multitarget approach. We have explored the library of 2029 natural product-like compounds for their multi-targeting potential against AD by inhibiting AChE, BChE (cholinergic pathway) MAO-A, and MOA-B (oxidative stress pathway) through in silico high-throughput screening and molecular dynamics simulation. Based on the binding energy of these target enzymes, approximately 189 compounds exhibited a score of less than −10 kcal/mol against all targets. However, none of the control inhibitors exhibited a binding affinity of less than −10 kcal/mol. Among these, the top 10 hits of compounds against all four targets were selected for ADME-T analysis. As a result, only F0850-4777 exhibited an acceptable range of physicochemical properties, drug-likeness, pharmacokinetics, and suitability for BBB permeation with high GI-A and non-toxic effects. The molecular dynamics study confirmed that F0850-4777 remained inside the binding cavity of targets in a stable conformation throughout the simulation and Prime-MM/GBSA study revealed that van der Waals’ energy (ΔGvdW) and non-polar solvation or lipophilic energy (ΔGSol_Lipo) contribute favorably towards the formation of a stable protein–ligand complex. Thus, F0850-4777 could be a potential candidate against multiple targets of two pathophysiological pathways of AD and opens the doors for further confirmation through in vitro and in vivo systems.


2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3784 ◽  
Author(s):  
Yuanqiang Wang ◽  
Haiqiong Guo ◽  
Zhiwei Feng ◽  
Siyi Wang ◽  
Yuxuan Wang ◽  
...  

The blockade of the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a critical role in cancer immunotherapy by reducing the immune escape. Five monoclonal antibodies that antagonized PD-1/PD-L1 interaction have been approved by the Food and Drug Administration (FDA) and marketed as immunotherapy for cancer treatment. However, some weaknesses of antibodies, such as high cost, low stability, poor amenability for oral administration, and immunogenicity, should not be overlooked. To overcome these disadvantages, small-molecule inhibitors targeting PD-L1 were developed. In the present work, we applied in silico and in vitro approaches to develop short peptides targeting PD-1 as chemical probes for the inhibition of PD-1–PD-L1 interaction. We first predicted the potential binding pocket on PD-1/PD-L1 protein–protein interface (PPI). Sequentially, we carried out virtual screening against our in-house peptide library to identify potential ligands. WANG-003, WANG-004, and WANG-005, three of our in-house peptides, were predicted to bind to PD-1 with promising docking scores. Next, we conducted molecular docking and molecular dynamics (MD) simulation for the further analysis of interactions between our peptides and PD-1. Finally, we evaluated the affinity between peptides and PD-1 by surface plasmon resonance (SPR) binding technology. The present study provides a new perspective for the development of PD-1 inhibitors that disrupt PD-1–PD-L1 interactions. These promising peptides have the potential to be utilized as a novel chemical probe for further studies, as well as providing a foundation for further designs of potent small-molecule inhibitors targeting PD-1.


Sign in / Sign up

Export Citation Format

Share Document