scholarly journals Corrosion Inhibition Using Harmal Leaf Extract as an Eco-Friendly Corrosion Inhibitor

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7024
Author(s):  
Nasreen Al Otaibi ◽  
Hassan H. Hammud

Extract of natural plants is one of the most important metallic corrosion inhibitors. They are readily available, nontoxic, environmentally friendly, biodegradable, highly efficient, and renewable. The present project focuses on the corrosion inhibition effects of Peganum Harmala leaf extract. The equivalent circuit with two time constants with film and charge transfer components gave the best fitting of impedance data. Extraction of active species by sonication proved to be an effective new method to extract the inhibitors. High percent inhibition efficacy IE% of 98% for 283.4 ppm solutions was attained using impedance spectroscopy EIS measurements. The values of charge transfer Rct increases while the double layer capacitance Cdl values decrease with increasing Harmal extract concentration. This indicates the formation of protective film. The polarization curves show that the Harmal extract acts as a cathodic-type inhibitor. It is found that the adsorption of Harmal molecules onto the steel surface followed Langmuir isotherm. Fourier-transform infrared spectroscopy FTIR was used to determine the electron-rich functional groups in Harmal extract, which contribute to corrosion inhibition effect. Scanning electron microscopy SEM measurement of a steel surface clearly proves the anticorrosion effect of Harmal leaves.

2011 ◽  
Vol 8 (2) ◽  
pp. 621-628 ◽  
Author(s):  
M. Anwar Sathiq ◽  
A. Jamal Abdul Nasser ◽  
P. Mohamed Sirajudeen

The influence ofN-(l-morpholinobenzyl)urea (MBU) on corrosion inhibition of mild steel in 1 M HCl was studied by weight loss, effect of temperature, potentiodynamic polarization and electrochemical impedance spectroscopy. The experimental results showed that the inhibition efficiency increases with increasing of MBU concentrations but decreases with increasing temperatures. The adsorption of MBU on the mild steel surface obeyed the Temkin’s adsorption isotherm. Potentiodynamic polarization curves showed that MBU acted as a cathodic inhibitor predominantly in hydrochloric acid. This was supported by the impedance measurements which showed a change in the charge transfer resistance and double layer capacitance indicating adsorption of MBU on the mild steel surface. Protective film formation against the acid attack is confirmed by SEM.


2021 ◽  
Vol 33 (12) ◽  
pp. 3115-3122
Author(s):  
P. Vijayakumar ◽  
S. Valarselvan ◽  
S.S. Syed Abuthahir

The corrosion inhibition effect of dipropyl sulphide (DPS) on carbon steel immersed in 0.5 N sulphuric acid has been evaluated at room temperature using mass loss method. The corrosion rate and inhibition efficiency was obtained from weight loss method. The corrosion inhibition efficiency increases with increase in concentration of an inhibitor. The corrosion rate decreases when increase in concentration of inhibitor. This is due to the higher concentration of inhibitor solution, which blocks the active site of a carbon steel and a protective film is formed on the carbon steel surface. Electrochemical studies have been used to confirm the formation of protective film over the carbon steel surface. This is further confirmed by surface analysis technique like FTIR spectroscopy and scanning electron microscopy. Energy dispersive analysis of X-ray was used to analyze the elements present over the carbon steel surface. Surface analysis of polished, corroded and inhibitor carbon steel surface has been evaluated by SEM. In order to study adsorption of dipropyl sulphide on carbon steel, in situ atomic force microscopy (AFM) measurements were performed in control, with and without dipropyl sulphide in 0.5 N H2SO4 solution.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 449 ◽  
Author(s):  
Mingjin Tang ◽  
Jianbo Li ◽  
Zhida Li ◽  
Luoping Fu ◽  
Bo Zeng ◽  
...  

In this paper, a corrosion inhibitor containing nitrogen atoms and a conjugated π bond was synthesised, and its final product synthesised by the optimal conditions of the orthogonal test results is named multi-mannich base (MBT). The corrosion inhibition effect on the N80 steel sheet of the corrosion inhibitor was evaluated in a CO2 saturated solution containing 3 wt % NaCl; the corrosion rate was 0.0446 mm/a and the corrosion inhibition rate was 90.4%. Through electrochemical and adsorption theory study, MBT is a mixed corrosion inhibitor that mainly shows cathode suppression capacity. The adsorption of MBT on the surface of the steel sheet follows the Langmuir adsorption isotherm; it can be spontaneously adsorbed on the surface of the N80 steel sheet, which has a good corrosion inhibition effect. The surface of the N80 steel sheet was microscopically characterised by atomic force microscope (AFM). It can be seen from the results that the N80 steel sheet with MBT added is significantly different from the blank control group; the surface of the steel sheet is relatively smooth, indicating that MBT forms an effective protective film on the surface of N80 steel, which inhibits the steel sheet.


2016 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Maria Erna ◽  
Emriadi Emriadi ◽  
Admin Alif ◽  
Syukri Arief

The thermodynamic properties and characterizations of corrosion inhibition of chitosan nano-particles on the surface of mild steel in peat water media had been studied using weight loss method at temperatures of 30 - 50 <sup>o</sup>C. Steel surfaces were characterized by FT-IR spectra and SEM-EDS morphology photos. The research found that the value of DG<sup>o </sup>approaching -40 kJmol<sup>-</sup><sup>1</sup>. The negative value of Gibbs free energy shows that the adsorption of inhibitor molecules on the surface of mild steel was achemisorption and it occurred spontaneously. Meanwhile, the values of DH<sup>o </sup>is also negative confirming that the adsoprtion of inhibitor molecules is an exothermic process. The value of DS<sup>o </sup>obtained is positive, it indicates hat the inhibitor molecules were adsorbed spontaneously on the mild steel surface. The analysis on mild steel surfaces hows that the nano-particle chitosan was adsorbed on the steel surface to form the complex compounds.


Author(s):  
V. Dharmalingam ◽  
P. Arockia Sahayaraj ◽  
A. John Amalraj ◽  
R. Shobana ◽  
R. Mohan

The goal of studying corrosion process is to find means of minimizing corrosion or prevent it from occurring. The use of inhibitors is one of the most popular methods for corrosion protection. A protective film has been formed on the surface of the mild steel in a neutral aqueous environment using a synergistic mixture of an eco-friendly inhibitor viz., Potassium Sodium Tartrate (SPT) along with polyacrylic acid (PAA) and Zn2+ ions. The inhibiting effect of SPT, PAA and Zn2+ ions have been investigated by gravimetric studies, Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The investigations revealed that SPT acts as an excellent synergist in corrosion inhibition. Optimum concentrations of all the three components of the ternary formulation are established by gravimetric studies. Potentiodynamic polarization studies inferred that this mixture functions as a cathodic inhibitor. EIS studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of mild steel. Surface characterization techniques (FTIR, SEM, AFM) are also used to ascertain the nature of the protective film. The mechanical aspect of corrosion inhibition is proposed.


Sign in / Sign up

Export Citation Format

Share Document