scholarly journals Effects of Sargassum thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7381
Author(s):  
Da-Hye Gam ◽  
Jae-Hyun Park ◽  
Ji-Woo Hong ◽  
Seong-Jin Jeon ◽  
Jun-Hee Kim ◽  
...  

Sargassum thunbergii has been traditionally used as an edible and medicinal material in oriental countries. However, the skin-whitening and anti-wrinkling effects of S. thunbergii have not yet been investigated. This study was conducted to establish optimal extraction conditions for the production of bioactive compounds with antioxidant activity as well as skin-whitening and anti-wrinkle effects using ultrasound-assisted extraction (UAE) in S. thunbergii. The extraction time (5.30~18.7 min), extraction temperature (22.4~79.6 °C), and ethanol concentration (0.0~99.5%), which are the main variables of the UAE, were optimized using a central composite design. Quadratic regression equations were derived based on experimental data and showed a high coefficient of determination (R2 > 0.85), demonstrating suitability for prediction. The optimal UAE condition for maximizing all dependent variables, including radical scavenging activity (RSA), tyrosinase inhibitory activity (TIA), and collagenase inhibitory activity (CIA), was identified as an extraction time of 12.0 min, an extraction temperature of 65.2 °C, and ethanol of 53.5%. Under these conditions, the RSA, TIA, and CIA of S. thunbergii extract were 86.5%, 88.3%, and 91.4%, respectively. We also confirmed S. thunbergii extract had inhibitory effects on the mRNA expression of tyrosinase-related protein-1, matrix metalloproteinase-1, and matrix metalloproteinase-9, which are the main genes of melanin synthesis and collagen hydrolysis. Liquid chromatography-tandem mass spectrometry was used to identify the main phenolic compounds in S. thunbergii extract, and caffeic acid was identified as a major peak, demonstrating that high value-added ingredients with skin-whitening and anti-wrinkling effects can be produced from S. thunbergii and used for developing cosmetic materials.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1231
Author(s):  
Da Hye Gam ◽  
Ji Woo Hong ◽  
Jun Hee Kim ◽  
Jin Woo Kim

Response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) conditions for simultaneous optimization of dependent variables, including DPPH radical scavenging activity (RSA), tyrosinase activity inhibition (TAI), and collagenase activity inhibition (CAI) of peanut shell extracts. The effects of the main variables including extraction time (5.0~55.0 min, X1), extraction temperature (26.0~94.0 °C, X2), and ethanol concentration (0.0%~99.5%, X3) were optimized. Based on experimental values from each condition, quadratic regression models were derived for the prediction of optimum conditions. The coefficient of determination (R2) of the independent variable was in the range of 0.89~0.96, which demonstrates that the regression model is suitable for the prediction. In predicting optimal UAE conditions based on the superimposing method, extraction time of 31.2 min, extraction temperature of 36.6 °C, and ethanol concentration of 93.2% were identified. Under these conditions, RSA of 74.9%, TAI of 50.6%, and CAI of 86.8% were predicted, showing good agreement with the experimental values. A reverse transcription polymerase chain reaction showed that peanut shell extract decreased mRNA levels of tyrosinase-related protein-1 and matrix metalloproteinase-3 genes in B16-F0 cell. Therefore, we identified the skin-whitening and anti-wrinkle effects of peanut shell extracts at protein as well as gene expression levels, and the results show that peanut shell is an effective cosmetic material for skin-whitening and anti-wrinkle effects. Based on this study, peanut shell, which was considered a byproduct, can be used for the development of healthy foods, medicines, and cosmetics.


Author(s):  
Khurul Ain Mohamed Mahzir ◽  
Siti Salwa Abdul Gani ◽  
Nor Fadzillah Mokhtar

In this study, the optimal condition for the extraction of antioxidants from the fruit Buah Mahkota Dewa (Phaleria macrocarpa) was determined by using Response Surface Methodology (RSM). The optimization was applied using central composite design (CCD) to investigate the three independent variables, namely extraction temperature (oC), extraction time (minutes) and extraction solvent to-feed ratio (%v/v) on the responses of free radical scavenging activity (DPPH), ferric ion reducing power assay (FRAP), total phenolic content (TPC) and total flavonoid content (TFC).The optimal conditions for the antioxidants extraction were found to be extraction temperature (64oC), extraction time (66 minutes) and solvent to-feed ratio (75 %v/v) with the highest percentage yield of DPPH, FRAP, TPC and TFC were 86.85%, 7.47%, 292.86 mg/g and 3.22 mg/g respectively. Moreover, the data were subjected to response surface methodology (RSM) and the results showed that the polynomial equations for all models were significant, did not show lack of fit, and presented adjusted determination coefficients (R2) above 99%, proving the yield of phenolic, flavonoid and antioxidants activities obtained experimentally were close to the predicted values and the suitability of the model employed in RSM to optimize the extraction conditions. Hence, in this study, the fruit from P.macrocarpa could be considered to have the strong antioxidant ability and can be used in various cosmeceutical or medicinal applications.


2018 ◽  
Vol 19 (9) ◽  
pp. 2503 ◽  
Author(s):  
Ah-Ram Han ◽  
Tae-Gyu Lim ◽  
Young-Ran Song ◽  
Mi Jang ◽  
Young Rhee ◽  
...  

Opuntia humifusa is a type of cactus whose fruits have been used in folk medicine for the treatment of several diseases. In the present study, we aimed to determine whether O. humifusa fruit water extract (OHE) has inhibitory effects against solar ultraviolet (sUV)-induced matrix metalloproteinase-1 (MMP-1) expression. In ex vivo human skin, we found that OHE suppressed sUV radiation-induced MMP-1 expression. The inhibitory effect of OHE was confirmed in human dermal fibroblasts. OHE treatment reduced sUV-induced MMP-1 expression by suppressing reactive oxygen species (ROS) generation and phosphorylation of c-Jun, a component of transcription factor activator protein 1 (AP-1). On the other hand, OHE recovered the tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and type 1 collagen production attenuated by sUV. As upstream signaling pathways for AP-1, MKK4-JNK, MEK-ERK, and MKK3/6-p38 phosphorylation were downregulated by OHE treatment. In addition, OHE exhibited DPPH radical scavenging activity. These findings demonstrate that OHE has a preventive effect against sUV-induced skin damage via suppression of pathways triggered by ROS.


2020 ◽  
Vol 34 (2) ◽  
pp. 237-248
Author(s):  
N. T. H. Yen ◽  
L. P. T. Quoc

In this study, ultrasound-assisted extraction (UAE) was used to extract bioactive compounds from Gomphrena celosioides Mart. Central composite face design (CCF) was used to optimize the influences of extraction factors on total phenolics content (TPC), total flavonoids content (TFC), and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging capacity (DPPH-RSC). The results obtained showed that all factors (solvent to solid ratio, extraction time and extraction temperature) strongly affected TPC, TFC, and DPPH-RSC. The optimal extraction conditions for TPC (3.123 mg GAE/g DW), TFC (1.736 mg QE/g DW), and DPPH-RSC (64.118%) were solvent to solid ratio of 27.3/1 (mL/g), extraction time of 40.2 min, and extraction temperature of 69 oC. In addition, under the optimal conditions, the results pointed out that the experimental values agreed with those predicted. Hence, this model has successfully optimized the extraction conditions for TPC, TFC and DPPH-RSC of Gomphrena celosioides extract.                     KEY WORDS: Antioxidant activity, CCF, Flavonoids, Model, Phenolic compounds, Regression equation   Bull. Chem. Soc. Ethiop. 2020, 34(2), 237-248 DOI: https://dx.doi.org/10.4314/bcse.v34i2.3


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Vasfiye Hazal Özyur ◽  
Ayşegül Erdoğan ◽  
Zeliha Zeliha Demirel ◽  
Meltem Conk Dalay ◽  
Semih Ötleş

Recently, microalgae have become important in their health, and cosmetic applications since they are viewed as new sources of carotenoids. Fucoxanthin is also a type of carotenoid. The anti-diabetic, anti-obesity, anti-cancer, and antioxidant properties of fucoxanthin have been widely reported. Since these valuable properties, they also represent a valuable resource of nutraceuticals for functional food applications. This study aims to determine the amount of fucoxanthin, gallic acid, and rutin in Nitzschia thermalis obtained from the Ege University Microalgae Culture Collection. The extraction parameters have been optimized using response surface methodology. The extraction temperature (25, 35, and 45°C), the extraction time (10, 20, and 30 min) and the biomass/solvent ratio (0.005, 0.001, and 0.015 g ml-1) have been assessed as response variables in the Box – Behnken design. The amount of fucoxanthin was determined by the C30 column at 450 nm, while both the amount of gallic acid and rutin were separated in the C18 column at 275 nm by HPLC-DAD. In the present study, the optimum extraction conditions providing the maximum amount of fucoxantin, gallic acid, and rutin were selected by applying the “desirability” function approach in response surface methodology. Finally, the temperature has been determined to be 27.30°C, the extraction time 10 minutes, and the biomass ratio 0.05 g ml-1. Under these conditions, the optimum fucoxanthin level has been determined as 5.8702 mg g-1, the gallic acid level as 0.0140 mg g-1, and the rutin level as 0.0496 mg g-1. The findings are in good agreement with international published values for fucoxanthin content. In addition, response surface methodology was shown to be an effective technique for optimising extraction conditions for maximum fucoxanthin yield. In conclusion, these findings may be applied in the development of extraction methodologies for value added microalgea products as well as can serve as a reference for the extraction of fucoxanthin having high gallic acid and rutin from other brown microalgae, and therefore it could potentially be applied in both pharmaceutical and food industries.


2021 ◽  
Vol 38 (1) ◽  
pp. 4-19
Author(s):  
Zeinab Golmahi ◽  
Amir Hossein Elhamirad

Propolis is one of the byproducts of honey bees; it contains many phenolic compounds which are some of the most important natural antioxidants. The present study examined the antioxidant activity of propolis and its role in the stability of sunflower oil as a natural antioxidant in the form of Box–Behnken design. The extraction process was performed using an ultrasonic bath method with two factors in three levels which included 18 assays by the response surface methods. The investigated variables included the concentration of the extract (min: 30 and max: 1000 ppm), the extraction time (min: 10 and max: 30 minutes), and temperature (min: 37.5 and max: 50°C). After analysis of the data in optimal conditions, the concentration of propolis ethanol extract, extraction temperature, and extraction time was determined as 997.5 ppm, 34.6°C, and 30 min, respectively. In this condition, the total phenolic compounds and the free-radical scavenging properties were reported as 253.1mgGAE/100gDW and 85.9%, respectively. The result of the evaluation of the oxidative stability of the optimized sample oil showed reduced peroxide and thiobarbituric acid index compared to the control sample and synthetic antioxidants (BHT); also, the oil stability improved significantly over time.


2015 ◽  
Vol 1113 ◽  
pp. 217-222
Author(s):  
Ummi Kalthum Ibrahim ◽  
Amira Sofea Mahamad Husin ◽  
Ruzitah Mohd Salleh

This study investigates the antioxidant activity and total phenolic content on different parts of Garcinia mangostana which are pericarp, leaf, fruit, and seed. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to determine the antioxidant activity and the total phenolic content was determined by Folin-Ciocalteu method. Response surface method (RSM) was used to determine the effect of the two extraction variables: extraction time (30-120 minutes) and extraction temperature (30-50°C) on yield of total phenolic content and antioxidant activity of different parts of Garcinia mangostana. The significant factors on each experimental design response were identified from the analysis of variance (ANOVA). The best condition for total phenolic content of different parts of Garcinia mangostana was chosen based on the desirability obtained by using extraction temperature of 30°C and extraction time of 60.09 minutes, which resulted in 0.0274 mg GAE/g of total phenolic content in pericarp, 0.2501 mg GAE/g of total phenolic content in leaf, 0.0202 mg GAE/g of total phenolic content in fruit, and 0.0198 mg GAE/g of total phenolic content in seed of Garcinia mangostana. Under this conditions, it was found that the antioxidant activity of pericarp, leaf, fruit, and seed of Garcinia mangostana were 89.45%, 86.58%, 93.33%, and 78.80% of radical scavenging activity, respectively.


Sign in / Sign up

Export Citation Format

Share Document