scholarly journals Study on Purification and Characterization of Polyphenol Oxidase from Acetes chinensis

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7545
Author(s):  
Jianyou Zhang ◽  
Guangcheng Zhou ◽  
Lifeng Fei ◽  
Lifan Chen ◽  
Lei Sun ◽  
...  

Acetes chinensis (belonging to the Decapoda Sergestidae genus) is widely distributed in East Asian waters and is extremely widespread and present in the shallow coastal areas of China. Polyphenol oxidase (PPO), which was extracted from Acetes chinensis, was purified in a four-step procedure involving phosphate-buffered saline treatment, ammonium sulphate precipitation, DEAE-Cellulose chromatography, and Phenyl-Sepharose HP chromatography, and then, its biochemical characterization was measured. The specific activity of the purified enzyme was increased to 643.4 U/mg, which is a 30.35 times increase in purification, and the recovery rate was 17.9%. L-dopa was used as the substrate, the enzymatic reactions catalyzed by PPO conformed to the Michaelis equation, the maximum reaction velocity was 769.23 U/mL, and the Michaelis constant Km was 0.846 mmol/L. The optimal pH of PPO from Acetes chinensis was 7.5, and the optimal temperature was 35 °C. The metal ions experiment showed that Mn2+ and K+ could enhance the activity of PPO; that Ba2+ and Ca2+ could inhibit the activity of PPO; and that Cu2+ had a double effect on PPO, increasing the PPO activity at low concentrations and inhibiting the PPO activity at high concentrations. The inhibitor experiment showed that the inhibitory effects of EDTA and kojic acid were weak and that ascorbic acid and sodium pyrophosphate had good inhibitory effects. The purification and characterization of Acetes chinensis serve as guidelines for the prediction of enzyme behavior, leading to effective prevention of enzymatic browning during processing.

2016 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
B. S. Fagbohunka ◽  
R. E. Okonji ◽  
Ayinla Zainab Adenike

Cellulase enzyme was purified and characterized from termite soldiers (Ametermes eveuncifer) using 70% ammonium sulphate precipitation, ion exchange chromatography and affinity chromatography. The enzyme isolated had a specific activity of 5.04 U/mg with a percentage yield of 11.7%. The enzyme showed maximum activity at 500C and pH 8. The enzyme was not inhibited by Ba2+ at a concentration of 1mM and Pb2+ at 10 mM concentration but was inhibited by other metal ions at 1 mM and 10 mM concentrations of their salts (NaCl, KCl, MnCl2, and NiCl2),


2012 ◽  
Vol 61 (1) ◽  
pp. 51-55 ◽  
Author(s):  
PONNUSWAMY VIJAYARAGHAVAN ◽  
S.G. PRAKASH VINCENT

A microorganism hydrolyzing carboxymethyl cellulose was isolated from a paddy field and identified as Bacillus sp. Production of cellulase by this bacterium was found to be optimal at pH 6.5, 37 degrees C and 150 rpm of shaking. This cellulase was purified to homogeneity by the combination of ammonium sulphate precipitation, DEAE cellulose, and sephadex G-75 gel filtration chromatography. The cellulase was purified up to 14.5 fold and had a specific activity of 246 U/mg protein. The enzyme was a monomeric cellulase with a relative molecular mass of 58 kDa, as determined by SDS-PAGE. The enzyme exhibited its optimal activity at 50 degrees C and pH 6.0. The enzyme was stable in the pH range of 5.0 to 7.0 and its stability was maintained for 30 min at 50 degrees C and its activity got inhibited by Hg2+, Cu2+, Zn2+, Mg2+, Na2+, and Ca2+.


1984 ◽  
Vol 220 (3) ◽  
pp. 825-833 ◽  
Author(s):  
S C Butterwith ◽  
R Hopewell ◽  
D N Brindley

A method is described by which the Mg2+-stimulated phosphatidate phosphohydrolase can be purified from the soluble fraction of liver from ethanol-treated rats. The increase in specific activity was about 416-fold. This involved purification by adsorption on calcium phosphate, chromatography on DE-52 DEAE-cellulose, separation on Ultrogel AcA-34 and chromatography on CM-Sepharose 6B. The effects of phosphatidylcholine, phosphatidate and Mg2+, Mn2+ and Zn2+ on the activity are described. Inhibitor studies indicate that the phosphohydrolase contains functional thiol groups and arginine residues.


1981 ◽  
Vol 193 (3) ◽  
pp. 663-670 ◽  
Author(s):  
L B Schwartz ◽  
K F Austen

Two isoenzyme of beta-glucuronidase from a rat basophil leukaemia tumour were co-purified 4067-fold by (NH4)2SO4 precipitation and sequential chromatography on concanavalin A–Sepharose, Sephadex G-200, DEAE-cellulose, CM-cellulose and phosphocellulose. The purity of the mixture was established by the coincidence of the peaks of enzyme activity and protein at a molecular weight of 300 000 on Bio-Gel P-300, the presence of only two protein bands, both of them enzymically active, in polyacrylamide gels after electrophoresis under non-denaturing conditions, and the presence of a single subunit species, of mol.wt. 75 000, after electrophoresis in polyacrylamide gels under a denaturing conditioning. The major isoenzyme co-migrated with the L form from rat liver during electrophoresis in alkaline polyacrylamide gels, whereas the minor isoenzyme migrated more rapidly than either the lysosomal form or the rat liver microsomal form and was designated the tumour (T) isoenzyme. A mixture of the purified isoenzymes from two preparations had an average specific activity of 1389 units/mg for phenolphthalein beta-D-glycopyranosiduronic acid. The L and T isoenzymes, which had pI5.9 and 5.7 respectively, could be obtained free of cross-contamination by isoelectric focusing and had similar specific activities. Although the T isoenzyme could be a catabolic product of the M or the L form, it could also be a unique tumour product, because it was not detected in extracts of normal rat tissues.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.


2021 ◽  
Vol 22 (14) ◽  
pp. 7390
Author(s):  
Nicole Wesch ◽  
Frank Löhr ◽  
Natalia Rogova ◽  
Volker Dötsch ◽  
Vladimir V. Rogov

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


2017 ◽  
Vol 42 (6) ◽  
Author(s):  
Raksmont Ubonbal ◽  
Saijai Porsoongnoen ◽  
Jureerut Daduang ◽  
Sompong Klaynongsruang ◽  
Sakda Daduang

AbstractIntroduction:The tropical plant amylases involved in the fruit ripening stage is outstanding for their high activities in converting starch to sugars within a short period at high temperatures over 40°C.Methods:The α amylase iso-enzymes from Ok-Rong mango (Results:The enzyme was purified 105-fold with a final specific activity of 59.27 U mgConclusion:Two α amylase iso-enzymes were classified as members of the low-pI group of amylases with identical structure, properties and functions. They are mesophilic with high possibilities for application for many purposes.


2013 ◽  
Vol 10 (3) ◽  
pp. 844-853
Author(s):  
Baghdad Science Journal

Endoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.


Sign in / Sign up

Export Citation Format

Share Document