scholarly journals Tetrabromobisphenol A Disturbs Brain Development in Both Thyroid Hormone-Dependent and -Independent Manners in Xenopus laevis

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 249
Author(s):  
Mengqi Dong ◽  
Yuanyuan Li ◽  
Min Zhu ◽  
Jinbo Li ◽  
Zhanfen Qin

Although tetrabromobisphenol A (TBBPA) has been well proven to disturb TH signaling in both in vitro and in vivo assays, it is still unclear whether TBBPA can affect brain development due to TH signaling disruption. Here, we employed the T3-induced Xenopus metamorphosis assay (TIXMA) and the spontaneous metamorphosis assay to address this issue. In the TIXMA, 5–500 nmol/L TBBPA affected T3-induced TH-response gene expression and T3-induced brain development (brain morphological changes, cell proliferation, and neurodifferentiation) at premetamorphic stages in a complicated biphasic concentration-response manner. Notably, 500 nmol/L TBBPA treatment alone exerted a stimulatory effect on tadpole growth and brain development at these stages, in parallel with a lack of TH signaling activation, suggesting the involvement of other signaling pathways. As expected, at the metamorphic climax, we observed inhibitory effects of 50–500 nmol/L TBBPA on metamorphic development and brain development, which was in agreement with the antagonistic effects of higher concentrations on T3-induced brain development at premetamorphic stages. Taken together, all results demonstrate that TBBPA can disturb TH signaling and subsequently interfere with TH-dependent brain development in Xenopus; meanwhile, other signaling pathways besides TH signaling could be involved in this process. Our study improves the understanding of the effects of TBBPA on vertebrate brain development.

Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 470
Author(s):  
Xining Li ◽  
Hye-Won Yang ◽  
Yunfei Jiang ◽  
Jae-Young Oh ◽  
You-Jin Jeon ◽  
...  

Diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae (IO) showed potential whitening effects against UV-B radiation. However, the components of IO as well as their molecular mechanism against α-melanocyte-stimulating hormone (α-MSH) have not yet been investigated. Thus, this study aimed to investigate the inhibitory effects of Ishophloroglucin A (IPA), a phlorotannin isolated from brown algae IO, and its crude extract (IOE), in melanogenesis in vivo in an α-MSH-induced zebrafish model and in B16F10 melanoma cells in vitro. Molecular docking studies of the phlorotannins were carried out to determine their inhibitory effects and to elucidate their mode of interaction with tyrosinase, a glycoprotein related to melanogenesis. In addition, morphological changes and melanin content decreased in the α-MSH-induced zebrafish model after IPA and IOE treatment. Furthermore, Western blotting results revealed that IPA upregulated the extracellular related protein expression in α-MSH-stimulated B16F10 cells. Hence, these results suggest that IPA isolated from IOE has a potential for use in the pharmaceutical and cosmetic industries.


2020 ◽  
Author(s):  
Dan Liu ◽  
Xiyue Xu ◽  
Shuci Liu ◽  
Xuan Zhao ◽  
Anqun Tang ◽  
...  

Abstract Background The prolonged hypersecretion of catecholamine induced by chronic stress may correlate with various steps of malignant progression of cancer and β2-AR overexpressed in certain cancer cells may translate the signals from neuroendocrine system to malignant signals by interacting with oncoproteins such as Her2. Crosstalk of the cell signaling pathways mediated by β2-AR and Her2 may promote a stronger or more sustained biological response. However, the molecular mechanisms underlying cross-communication between β2-AR and Her2 mediated signaling pathways are not fully understood. Methods In this study, the effects of adrenergic signaling on Her2 cleavage were evaluated by various assays, such as western blot, immunofluorescence and immunohistochemistry. In order to reveal the mechanism about Her2 cleavage triggered by β2-AR activation, the molecular and pharmacological means were employed. By using in vitro and in vivo assay, the influences of the crosstalk between β2-AR and Her2 on the bio-behaviors of tumor cells were demonstrated. Results Our data demonstrate that catecholamine stimulation activates the expression and proteolytic activity of ADAM10 by modulating the expression of miR-199a-5p and SIRT1 and also confirm that catecholamine induction triggers the activities of γ-secretase, leading to shedding of Her2 ECD by ADAM10 and subsequent intramembranous cleavage of Her2 ICD by presenilin-dependent γ-secretase, nuclear translocation of Her2 ICD and enhanced transcription of tumor metastasis-associated gene COX-2 . Chronic stimulation of catecholamine strongly promotes the invasive activities of cancer cells in vitro and spontaneous tumor lung metastasis in mice. Furthermore, the nuclear localization of Her2 was significantly correlated with overexpression of β2-AR in human breast cancer tissues. Conclusion This study illustrates that adrenergic signaling activation triggers Her2 cleavage, resulting in enhanced invasive and metastasis activities of cancer cells. Our data also reveal that an unknown mechanism by which the regulated intramembrane proteolysis (RIP) initiated by β2-AR activation controls a novel Her2-mediated signaling transduction under physiological and pathological conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ya Liu ◽  
Lupeng Wang ◽  
Xiuli Zhang ◽  
Yuying Deng ◽  
Limin Pan ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is a high-risk subtype of breast cancer with high capacity for metastasis and lacking of therapeutic targets. Our previous studies indicated that cystathionine γ-lyase (CSE) may be a new target related to the recurrence or metastasis of TNBC. Downregulation of CSE could inhibit the growth and metastasis of TNBC. The purpose of this study was to investigate the activity of the novel CSE inhibitor I194496 against TNBC in vivo and in vitro. The anticancer activity of I194496 in vitro were detected by MTS, EdU, and transwell assays. Methylene blue assay was used to determine the H2S level. Western blot was performed to analyze the expression of related pathway proteins. Xenograft tumors in nude mice were used to analyze the anticancer activity of I194496 in vivo. I194496 exerted potent inhibitory effects than l-propargylglycine (PAG, an existing CSE inhibitor) on human TNBC cells and possessed lower toxicity in normal breast epithelial Hs578Bst cells. I194496 reduced the activity and expression of CSE protein and the release of H2S in human TNBC cells. Meanwhile, the protein levels of PI3K, Akt, phospho (p)-Akt, Ras, Raf, p-ERK, p-Anxa2, STAT3, p-STAT3, VEGF, FAK, and Paxillin were decreased in human TNBC cells administrated with I194496. Furthermore, I194496 showed more stronger inhibitory effects on human TNBC xenograft tumors in nude mice. I194496 could inhibit the growth of human TNBC cells via the dual targeting PI3K/Akt and Ras/Raf/ERK pathway and suppress the metastasis of human TNBC cells via down-regulating Anxa2/STAT3 and VEGF/FAK/Paxillin signaling pathways. CSE inhibitor I194496 might become a novel and potential agent in the treatment of TNBC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Tang ◽  
Xiaolan Cheng ◽  
Shiyu Yi ◽  
Yuanyuan Zhang ◽  
Zhigang Tang ◽  
...  

Toll like receptor (TLR)s have a central role in regulating innate immunity and their activation have been highlighted in the pathogenesis of rheumatoid arthritis (RA). EFL2, one of diterpenoids derived from Euphorbia seeds, is nearly unknown expect for its improving effect on acute lung injury. Our present study aimed to investigate EFL2’s pharmacokinetic features, its therapeutic effect on rheumatoid arthritis, and explored the potential anti-arthritic mechanisms. K/BxN serum transfer arthritis (STA) murine model was used to assess EFL2’s anti-arthritic effects. We also applied UPLC-MS method to measure the concentrations of EFL2 in plasma. The inhibitory effects of this compound on inflammatory cells infiltration and activation were determined by flow cytometry analysis and quantitative real-time polymerase chain reaction (qRT-PCR) in vivo, and immunochemistry staining and ELISA in murine macrophages and human PBMCs in vitro, respectively. The mechanism of EFL2 on TLRs mediated signaling pathway was evaluated by PCR array, Western blot, plasmid transfection and confocal observation. Intraperitoneal (i.p.) injection of EFL2, instead of oral administration, could effectively ameliorate arthritis severity of STA mice. The inflammatory cells migration and infiltration into ankles were also significantly blocked by EFL2, accompanied with dramatically reduction of chemokines mRNA expression and pro-inflammatory cytokines production. In vivo PCR microarray indicated that EFL2 exerted anti-arthritis bioactivity by suppressing TLR7 mediated signaling pathway. In vitro study confirmed the inhibitory effects of EFL2 on TLR7 or TLR3/7 synergistically induced inflammatory cytokines secretion in murine macrophages and human PBMCs. In terms of molecular mechanism, we further verified that EFL2 robustly downregulated TLR7 mediated IRAK4-IKKβ-IRF5 and NF-κB signaling pathways activation, and blocked IRF5 and p65 phosphorylation and translocation activity. Taken together, our data indicate EFL2’s therapeutic potential as a candidate for rheumatoid arthritis and other TLR7-dependent diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Roland Osei. Saahene ◽  
Elvis Agbo ◽  
Precious Barnes ◽  
Ewura Seidu Yahaya ◽  
Benjamin Amoani ◽  
...  

Phyllanthus urinaria has been characterized for its several biological and medicinal effects such as antiviral, antibacterial, anti-inflammatory, anticancer, and immunoregulation. In recent years, Phyllanthus urinaria has demonstrated potential to modulate the activation of critical pathways such as NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs associated with cell growth, proliferation, metastasis, and apoptotic cell death. To date, there is much evidence indicating that modulation of cellular signaling pathways is a promising approach to consider in drug development and discovery. Thus, therapies that can regulate cancer-related pathways are longed-for in anticancer drug discovery. This review’s focus is to provide comprehensive knowledge on the anticancer mechanisms of Phyllanthus urinaria through the regulation of NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs signaling pathways. Thus, the review summarizes both in vitro and in vivo effects of Phyllanthus urinaria extracts or bioactive constituents with emphasis on tumor cell apoptosis. The literature information was obtained from publications on Google Scholar, PubMed, Web of Science, and EBSCOhost. The key words used in the search were “Phyllanthus” or “Phyllanthus urinaria” and cancer. P. urinaria inhibits cancer cell proliferation via inhibition of NF-κB, P13K/AKT, and MAPKs (ERK, JNK, P38) pathways to induce apoptosis and prevents angiogenesis. It is expected that understanding these fundamental mechanisms may help stimulate additional research to exploit Phyllanthus urinaria and other natural products for the development of novel anticancer therapies in the future.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
YC Oh ◽  
YH Jeong ◽  
WK Cho ◽  
SJ Lee ◽  
JY Ma

1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 157 ◽  
Author(s):  
Adriana Tomoko Nishiya ◽  
Marcia Kazumi Nagamine ◽  
Ivone Izabel Mackowiak da Fonseca ◽  
Andrea Caringi Miraldo ◽  
Nayra Villar Scattone ◽  
...  

Canine oral mucosal melanomas (OMM) are the most common oral malignancy in dogs and few treatments are available. Thus, new treatment modalities are needed for this disease. Bacillus anthracis (anthrax) toxin has been reengineered to target tumor cells that express urokinase plasminogen activator (uPA) and metalloproteinases (MMP-2), and has shown antineoplastic effects both, in vitro and in vivo. This study aimed to evaluate the effects of a reengineered anthrax toxin on canine OMM. Five dogs bearing OMM without lung metastasis were included in the clinical study. Tumor tissue was analyzed by immunohistochemistry for expression of uPA, uPA receptor, MMP-2, MT1-MMP and TIMP-2. Animals received either three or six intratumoral injections of the reengineered anthrax toxin prior to surgical tumor excision. OMM samples from the five dogs were positive for all antibodies. After intratumoral treatment, all dogs showed stable disease according to the canine Response Evaluation Criteria in Solid Tumors (cRECIST), and tumors had decreased bleeding. Histopathology has shown necrosis of tumor cells and blood vessel walls after treatment. No significant systemic side effects were noted. In conclusion, the reengineered anthrax toxin exerted inhibitory effects when administered intratumorally, and systemic administration of this toxin is a promising therapy for canine OMM.


Sign in / Sign up

Export Citation Format

Share Document