scholarly journals Green Synthesis of Oxoquinoline-1(2H)-carboxamide as Antiproliferative and Antioxidant Agents: An Experimental and In-Silico Approach to High Altitude Related Disorders

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 309
Author(s):  
Amena Ali ◽  
Abuzer Ali ◽  
Musarrat Husain Warsi ◽  
Mohammad Akhlaquer Rahman ◽  
Mohamed Jawed Ahsan ◽  
...  

At high altitudes, drops in oxygen concentration result in the creation of reactive oxygen and nitrogen species (RONS), which cause a variety of health concerns. We addressed these health concerns and reported the synthesis, characterization, and biological activities of a series of 10 oxoquinolines. N-Aryl-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)carboxamides (5a–j) were accessed in two steps under ultrasonicated irradiation, as per the reported method. The anticancer activity was tested at 10 µM against a total of 5 dozen cancer cell lines obtained from nine distinct panels, as per the National Cancer Institute (NCI US) protocol. The compounds 5a (TK-10 (renal cancer); %GI = 82.90) and 5j (CCRF-CEM (Leukemia); %GI = 58.61) showed the most promising anticancer activity. Compound 5a also demonstrated promising DPPH free radical scavenging activity with an IC50 value of 14.16 ± 0.42 µM. The epidermal growth factor receptor (EGFR) and carbonic anhydrase (CA), two prospective cancer inhibitor targets, were used in the molecular docking studies. Molecular docking studies of ligand 5a (docking score = −8.839) against the active site of EGFR revealed two H-bond interactions with the residues Asp855 and Thr854, whereas ligand 5a (docking = −5.337) interacted with three H-bond with the residues Gln92, Gln67, and Thr200 against the active site CA. The reported compounds exhibited significant anticancer and antioxidant activities, as well as displayed significant inhibition against cancer targets, EGFR and CA, in the molecular docking studies. The current discovery may aid in the development of novel compounds for the treatment of cancer and oxidative stress, and other high altitude-related disorders.

RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 30125-30132 ◽  
Author(s):  
Najm Ul Hassan Khan ◽  
Sumera Zaib ◽  
Kishwar Sultana ◽  
Imtiaz Khan ◽  
Berline Mougang-Soume ◽  
...  

CompoundNA3bound inside the active site of the enzyme.


2020 ◽  
Vol 32 (9) ◽  
pp. 2125-2129
Author(s):  
RAMARAJAN RAJALAKSHMI ◽  
RAJAVEL SANTHI ◽  
THANGARAJ ELAKKIYA

A series of new 4-thiazolidinone derivatives of 2-(4-chlorophenyl)-3-(6-(thiophen-2-yl)-4-p-tolyl-4H-1,3-oxazin-2-yl)- thiazolidin-4-one (7h-m) are synthesized because of its wide range of biological activities.1H & 13C NMR, IR studies were applied for the elucidation of all the synthesized compounds. All the synthesized compounds have been tested for antidiabetic and antioxidant activity in vitro method against standard. The analogs 7h-m was evaluated for α-amylase and α-glucosidase inhibitory potential. The structures of all the compounds have been screened for antioxidant activity using DPPH radical scavenging assay, NO scavenging method. Molecular docking studies were accomplished in addition to understand the binding affinity of those compounds with PDBID 2HR7 which showed that the synthesized derivatives bind in the lively binding site of the target protein


2013 ◽  
Vol 9 (3) ◽  
pp. 313-328 ◽  
Author(s):  
Agnieszka A. Kaczor ◽  
Monika Pitucha ◽  
Zbigniew Karczmarzyk ◽  
Waldemar Wysocki ◽  
Jolanta Rzymowska ◽  
...  

Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activity as antioxidant, antibacterial, antifungal, and anticancer. Objective: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4-naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing. Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8a-c, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor. Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites. Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.


Author(s):  
Punabaka Jyothi ◽  
Kuna Yellamma

Objective: Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms, is biochemically characterized by a significant decrease in the brain neurotransmitter Acetylcholine (ACh).Methods: In the present insilico study, six plant bioactive compounds namely Harmol, Vasicine, Harmaline, Harmine, Harmane and Harmalol (from P. Nigellastrum Bunge) were analyzed for their inhibitory role on AChE (Acetylcholinesterase) and BChE (Butyrylcholinesterase) activity by applying the molecular docking studies. Other parameters viz. determination of molecular interaction-based binding affinity values, protein-ligand interactions, Lipinski rule of five, functional properties and biological activities for the above compounds were also calculated by employing the appropriate bioinformatics tools.Results: The results of docking analysis clearly showed that Harmalol has highest binding affinity with AChE (-8.6 kcal/mole) and BChE (-8.0 kcal/mole) but it does not qualified the enzyme inhibitory activity, since it was exerted, and also has least percentage activity on AD and neurodegenerative disease. Whereas, the Harmine has been second qualified binding affinity (-8.4 kcal/mol) and first in other parameters when compared with Harmalol.Conclusion: Based on docking results and other parameters conducted, we are concluding that Harmine is the best compound for further studies to treat AD.Keywords: Alzheimer's disease (AD), Acetylcholinesterase, Butyrylcholinesterase, Lead Molecules


2019 ◽  
Vol 70 (10) ◽  
pp. 3522-3526
Author(s):  
Smaranda Oniga ◽  
Catalin Araniciu ◽  
Gabriel Marc ◽  
Livia Uncu ◽  
Mariana Palage ◽  
...  

Considering the well-established antifungal activity of azole compounds, a new series of thiazolyl-methylen-1,3,4-oxadiazolines derivatives were designed and synthesized as lanosterol-demethylase inhibitors. The final compounds were screened for antifungal activity against the Candida albicans ATCC 90028 strain. Molecular docking studies were performed to investigate the interaction modes between the compounds and the active site of lanosterol 14a-demethylase, which is a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for the final compounds 5a-h.


2015 ◽  
Vol 45 (22) ◽  
pp. 2529-2545 ◽  
Author(s):  
Chandrika Nanjappa ◽  
Suresha Kumara T. Hanumanthappa ◽  
Gopalpur Nagendrappa ◽  
Pasura Subbaiah Sujan Ganapathy ◽  
Shirur Dakappa Shruthi ◽  
...  

2021 ◽  
Vol 33 (11) ◽  
pp. 2755-2761
Author(s):  
Shaheen Sultana ◽  
P. Pandian ◽  
B. Rajkamal

The synthesis of novel indole derivatives 4a-o using a microwave assisted method via Schiff’s base and Mannich base reaction mechanism was described. Compounds 3a-c were synthesized via reaction of 2-amino benzothiazole with substituted isatin by Schiff base reaction mechanism. Also, indole derivatives 4a-o were synthesized via reaction of compounds 3a-c with substituted benzaldehydes by Mannich base reaction. The biological potentials of the newly synthesized indole derivatives were evaluated for their anthelmintic activity and in vitro anticancer activity by MTT assay. The anticancer activity results suggested that indole derivatives 4c-o have activity against MCF-7 and SKOV3 cells in comparison with doxorubicin as standard drug. Furthermore, the molecular docking studies of these novel derivatives of indole showed good agreement with the biological results when their binding pattern and affinity towards the active site of EGFR was also investigated.


Author(s):  
Vivek B. Panchabhai ◽  
Santosh R. Butle ◽  
Parag G. Ingole

We report a novel scaffold of N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives with potent antibacterial activity by targeting this biotin carboxylase enzyme. The series of eighteen N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives were synthesized, characterized and further molecular docking studied to determine the mode of binding and energy changes with the crystal structure of biotin carboxylase (PDB ID: 2V58) was employed as the receptor with compounds 6a-r as ligands. The results obtained from the simulation were obtained in the form of dock score; these values represent the minimum energies. Compounds 6d, 6l, 6n, 6o, 6r and 6i showed formation of hydrogen bonds with the active site residues and van Der Walls interactions with the biotin carboxylase enzyme in their molecular docking studies. This compound can be studied further and developed into a potential antibacterial lead molecule.


2019 ◽  
Vol 87 ◽  
pp. 465-473 ◽  
Author(s):  
Bakthavatchala Reddy Nemallapudi ◽  
Grigory V. Zyryanov ◽  
Balakrishna Avula ◽  
Mallikarjuna Reddy Guda ◽  
Suresh Reddy Cirandur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document