scholarly journals Glutathione in Brain Disorders and Aging

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 324
Author(s):  
Igor Y. Iskusnykh ◽  
Anastasia A. Zakharova ◽  
Dhruba Pathak

Glutathione is a remarkably functional molecule with diverse features, which include being an antioxidant, a regulator of DNA synthesis and repair, a protector of thiol groups in proteins, a stabilizer of cell membranes, and a detoxifier of xenobiotics. Glutathione exists in two states—oxidized and reduced. Under normal physiological conditions of cellular homeostasis, glutathione remains primarily in its reduced form. However, many metabolic pathways involve oxidization of glutathione, resulting in an imbalance in cellular homeostasis. Impairment of glutathione function in the brain is linked to loss of neurons during the aging process or as the result of neurological diseases such as Huntington’s disease, Parkinson’s disease, stroke, and Alzheimer’s disease. The exact mechanisms through which glutathione regulates brain metabolism are not well understood. In this review, we will highlight the common signaling cascades that regulate glutathione in neurons and glia, its functions as a neuronal regulator in homeostasis and metabolism, and finally a mechanistic recapitulation of glutathione signaling. Together, these will put glutathione’s role in normal aging and neurological disorders development into perspective.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alessandro Galgani ◽  
Francesco Lombardo ◽  
Daniele Della Latta ◽  
Nicola Martini ◽  
Ubaldo Bonuccelli ◽  
...  

Abstract Purpose of Review Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. Recent findings LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. Summary LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1929 ◽  
Author(s):  
Salman Ul Islam ◽  
Adeeb Shehzad ◽  
Muhammad Bilal Ahmed ◽  
Young Sup Lee

Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.


2009 ◽  
Vol 4 (2) ◽  
pp. 120
Author(s):  
Maura Pugliatti ◽  
Paola Cossu ◽  
Patrik Sobocki ◽  
Ettore Beghi ◽  
◽  
...  

Brain disorders represent 35% of the total disease burden in Europe and 37% of the total disease burden in European regions with very low child mortality and low adult mortality; the latter group includes Italy. The negative socioeconomic impact of this burden is reflected in two fundamental issues: consumption of resources and state of health. In recent years, the European Brain Council (EBC), a co-ordinating council formed by European organisations and patient associations in neurological disorders, has encouraged and supported projects aimed at analysing the socioeconomic burden of brain disorders in Europe. Within the EBC, the pan-European study on Cost of Disorders of the Brain in Europe (CDBE) aimed at reporting the best possible estimates of the societal cost of 12 brain disorders (addiction, affective disorders, anxiety disorders, tumours, dementia, epilepsy, migraine and other headaches, multiple sclerosis, Parkinson's disease, psychotic disorders, stroke and trauma) based on the existing literature, using an ad hoc cost model. The aggregated results for Italy from the CDBE study are reviewed in this paper.


Science ◽  
2018 ◽  
Vol 360 (6395) ◽  
pp. eaap8757 ◽  
Author(s):  
◽  
Verneri Anttila ◽  
Brendan Bulik-Sullivan ◽  
Hilary K. Finucane ◽  
Raymond K. Walters ◽  
...  

Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 286 ◽  
Author(s):  
Marina Warepam ◽  
Khurshid Ahmad ◽  
Safikur Rahman ◽  
Hamidur Rahaman ◽  
Kritika Kumari ◽  
...  

Most of the human diseases related to various proteopathies are confined to the brain, which leads to the development of various forms of neurological disorders. The human brain consists of several osmolytic compounds, such as N-Acetylaspartate (NAA), myo-inositol (mI), glutamate (Glu), glutamine (Gln), creatine (Cr), and choline-containing compounds (Cho). Among these osmolytes, the level of NAA drastically decreases under neurological conditions, and, hence, NAA is considered to be one of the most widely accepted neuronal biomarkers in several human brain disorders. To date, no data are available regarding the effect of NAA on protein stability, and, therefore, the possible effect of NAA under proteopathic conditions has not been fully uncovered. To gain an insight into the effect of NAA on protein stability, thermal denaturation and structural measurements were carried out using two model proteins at different pH values. The results indicate that NAA increases the protein stability with an enhancement of structure formation. We also observed that the stabilizing ability of NAA decreases in a pH-dependent manner. Our study indicates that NAA is an efficient protein stabilizer at a physiological pH.


Magnetic resonance imaging (MRI) and computed tomography (CT) imaging modalities are invaluable for the diagnosis and treatment of neurological diseases. This study aimed to correlate the anatomical sectional data of the cats’ brain to the sections obtained by both MRI and CT examination. The present work was conducted on four cats, 1-4 years old, weighing about (2.5 to 3.5) kg admitted to the hospital with terminal diseases not related to the nervous system. The anatomical sections were taken at intervals of 5 mm, on different planes such as sagittal, frontal and transverse. The sections were obtained, following humane euthanasia, from frozen heads and identified according to the previous literatures. The images from both MRI and CT were compared with those of the gross anatomy sections and different structures were identified. To identify arterial distribution in the brain, one cat was injected with red latex through the common carotid artery, frozen, and sectioned. For vascular imaging, the same cat was examined by MRI after intravenous injection of contrast media. The descriptions of the brain anatomy from the MRI and CT images will act as a basis for the diagnosis and treatment of different neurological diseases in cat. This will assist veterinarians and radiologists in the identification of various nervous lesions related to the brain.


2021 ◽  
Vol 19 ◽  
Author(s):  
Gaigai Li ◽  
Prativa Sherchan ◽  
Zhouping Tang ◽  
Jiping Tang

: Autophagy and phagocytosis are two important endogenous lysosomal dependent clearing systems in the organism. In some neurological disorders, excessive autophagy or dysfunctional phagocytosis have been shown to contribute to brain injury. Recent studies have revealed that there are underlying interactions between these two processes. However, different studies show inconsistent results for the contribution of autophagy to the phagocytic process in diverse phagocytes and relatively little is known about the link between them especially in the brain. It is critical to understand the role that autophagy plays in phagocytic process in order to promote clearance of endogenous and exogenous detrimental materials. In this review, we highlight studies that focused on phagocytosis and autophagy occurring in the brain and summarized the possible regulatory roles of autophagy in the process of phagocytosis. Balancing the roles of autophagy and phagocytosis may be a promising therapeutic strategy for the treatment of some neurological diseases in the future.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ryan R. Kelly ◽  
Sara J. Sidles ◽  
Amanda C. LaRue

Neurological diseases, particularly in the context of aging, have serious impacts on quality of life and can negatively affect bone health. The brain-bone axis is critically important for skeletal metabolism, sensory innervation, and endocrine cross-talk between these organs. This review discusses current evidence for the cellular and molecular mechanisms by which various neurological disease categories, including autoimmune, developmental, dementia-related, movement, neuromuscular, stroke, trauma, and psychological, impart changes in bone homeostasis and mass, as well as fracture risk. Likewise, how bone may affect neurological function is discussed. Gaining a better understanding of brain-bone interactions, particularly in patients with underlying neurological disorders, may lead to development of novel therapies and discovery of shared risk factors, as well as highlight the need for broad, whole-health clinical approaches toward treatment.


2020 ◽  
Author(s):  
Shinsuke Koike ◽  
Saori C Tanaka ◽  
Tomohisa Okada ◽  
Toshihiko Aso ◽  
Michiko Asano ◽  
...  

AbstractPsychiatric and neurological disorders are afflictions of the brain that can affect individuals throughout their lifespan. Many brain magnetic resonance imaging (MRI) studies have been conducted; however, imaging-based biomarkers are not yet well established for diagnostic and therapeutic use. This article describes an outline of the planned study, the Brain/MINDS Beyond human brain MRI project (FY2018 ∼ FY2023), which aims to establish clinically-relevant imaging biomarkers with multi-site harmonization by collecting data from healthy traveling subjects (TS) at 13 research sites. Collection of data in psychiatric and neurological disorders across the lifespan is also scheduled at 13 sites, whereas designing measurement procedures, developing and analyzing neuroimaging protocols, and databasing are done at three research sites. The Harmonization protocol (HARP) was established for five high-quality 3T scanners to obtain multimodal brain images including T1 and T2-weighted, resting state and task functional and diffusion-weighted MRI. Data are preprocessed and analyzed using approaches developed by the Human Connectome Project. Preliminary results in 30 TS demonstrated cortical thickness, myelin, functional connectivity measures are comparable across 5 scanners, providing high reproducibility and sensitivity to subject-specific connectome. A total of 75 TS, as well as patients with various psychiatric and neurological disorders, are scheduled to participate in the project, allowing a mixed model statistical harmonization. The HARP protocols are publicly available online, and all the imaging, demographic and clinical information, harmonizing database will also be made available by 2024. To the best of our knowledge, this is the first project to implement a rigorous, prospective harmonization protocol with multi-site TS data. It explores intractable brain disorders across the lifespan and may help to identify the disease-specific pathophysiology and imaging biomarkers for clinical practice.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
W. A. García-Suástegui ◽  
L. A. Ramos-Chávez ◽  
M. Rubio-Osornio ◽  
M. Calvillo-Velasco ◽  
J. A. Atzin-Méndez ◽  
...  

Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.


Sign in / Sign up

Export Citation Format

Share Document