scholarly journals The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 421
Author(s):  
Yao Yu ◽  
Yang Tian ◽  
Hui Zhang ◽  
Qingxian Jia ◽  
Xuejun Chen ◽  
...  

Meloxicam (MLX) is a non-steroidal anti-inflammatory drug used to treat rheumatoid arthritis and osteoarthritis. However, its poor water solubility limits the dissolution process and influences absorption. In order to solve this problem and improve its bioavailability, we prepared it in nanocrystals with three different particle sizes to improve solubility and compare the differences between various particle sizes. The nanocrystal particle sizes were studied through dynamic light scattering (DLS) and laser scattering (LS). Transmission electron microscopy (TEM) was used to characterize the morphology of nanocrystals. The sizes of meloxicam-nanocrystals-A (MLX-NCs-A), meloxicam-nanocrystals-B (MLX-NCs-B), and meloxicam-nanocrystals-C (MLX-NCs-C) were 3.262 ± 0.016 μm, 460.2 ± 9.5 nm, and 204.9 ± 2.8 nm, respectively. Molecular simulation was used to explore the distribution and interaction energy of MLX molecules and stabilizer molecules in water. The results of differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) proved that the crystalline state did not change in the preparation process. Transport studies of the Caco-2 cell model indicated that the cumulative degree of transport would increase as the particle size decreased. Additionally, plasma concentration–time curves showed that the AUC0–∞ of MLX-NCs-C were 3.58- and 2.92-fold greater than those of MLX-NCs-A and MLX-NCs-B, respectively. These results indicate that preparing MLX in nanocrystals can effectively improve the bioavailability, and the particle size of nanocrystals is an important factor in transmission and absorption.

2020 ◽  
Vol 860 ◽  
pp. 128-134
Author(s):  
Cahyaning Fajar Kresna Murti ◽  
Malik Anjelh Baqiya ◽  
Endarko ◽  
Triwikantoro

Particle size analysis of synthesized Al2O3 by dissolution and alkali fusion-coprecipitation methods has been conducted. The formation of nano- or microparticles can be synthesized by the top-down (physically) and bottom-up (chemically) methods. In this study, the commercial alumina (Merck) with the particle size of 63 µm was synthesized through the bottom-up method. The dissolution method was done by reacting to alumina with ammonium hydroxide (NH4OH). The alkali fusion method was carried out by reacting alumina with sodium hydroxide (NaOH) and it obtained by coprecipitation of the alkali fusion product with HCl and NH4OH. The result from both methods were calcined at 600°C. The phase of synthesized Al2O3 was identified by using X-ray diffraction (XRD), whereas the morphology observed using a transmission electron microscope (TEM), and the particle sizes measured by particle sizes analyzer (PSA). The XRD pattern shows the γ-Al2O3 phases with particle sizes of ~33 nm and ~25 nm from TEM observations, while the PSA results revealed agglomerated particles with particle sizes of 1263 nm and 477 nm for the dissolution and alkali fusion-coprecipitation method, respectively. Therefore, both methods can be used to reduce the particle size of γ-Al2O3.


Nano LIFE ◽  
2014 ◽  
Vol 04 (04) ◽  
pp. 1441014 ◽  
Author(s):  
Qi Liu ◽  
Weiping Hao ◽  
Yongguang Yang ◽  
Aurore Richel ◽  
Canbin Ouyang ◽  
...  

Nanocrystalline celluloses (NCCs) were separated from four commercial microcrystalline celluloses (MCCs) by an acid hydrolysis–sonication treatment. Transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectrum, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were conducted to investigate the NCCs. MCCs with different morphologies and particle sizes showed different aggregation degrees. The aggregation of MCCs followed the order MCC1 > MCC3 > MCC2 > MCC4, which is the same order of the heights of the resulting NCCs. The best uniformity and thermal stability were characterized for NCC3, which was produced by MCC3 with smallest original particle size and good dispersity among the four MCCs. This result suggests that both the original particle size and dispersity of MCCs had significant effects on separated NCCs.


2021 ◽  
Vol 876 ◽  
pp. 7-12
Author(s):  
Petr Urban ◽  
Fátima Ternero Fernández ◽  
Rosa M. Aranda Louvier ◽  
Raquel Astacio López ◽  
Jesus Cintas Físico

The effect of milling time on the microstructure evolution and formation of amorphous phase of Ti60Si40 alloy produced by mechanical alloying (MA) has been investigated. Laser diffraction, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were employed to characterize the particle size, morphology and structure of mechanically alloyed Ti60Si40. When the milling time is increased to 20 h, the particle size decreases from 23.7 to 4.7 μm, the shape of the particles changes to spherical and the crystalline structure is transformed into an amorphous phase. The amorphous Ti60Si40 alloy is stable when heating up to 750oC. Above this temperature, the cold crystallization of the intermetallic compounds Ti5Si3 and/or Ti5Si4 begins.


1997 ◽  
Vol 12 (2) ◽  
pp. 402-406 ◽  
Author(s):  
X. Cao ◽  
R. Prozorov ◽  
Yu. Koltypin ◽  
G. Kataby ◽  
I. Felner ◽  
...  

A method for the preparation of pure amorphous Fe2O3 powder with particle size of 25 nm is reported in this article. Pure amorphous Fe2O3 can be simply synthesized by the sonication of neat Fe(CO)5 or its solution in decalin under an air atmosphere. The Fe2O3 nanoparticles are converted to crystalline Fe3O4 nanoparticles when heated to 420 °C under vacuum or when heated to the same temperature under a nitrogen atmosphere. The crystalline Fe3O4 nanoparticles were characterized by x-ray diffraction and M¨ossbauer spectroscopy. The Fe2O3 amorphous nanoparticles were examined by Transmission Electron Micrography (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Quantum Design SQUID magnetization measurements. The magnetization of pure amorphous Fe2O3 at room temperature is very low (<1.5 emu/g) and it crystallizes at 268 °C.


2012 ◽  
Vol 727-728 ◽  
pp. 904-908
Author(s):  
R. Muccillo ◽  
J.R. Carmo

SrTi0,65Fe0,35O3-δ, Ca0,5Sr0,5Ti0,65Fe0,35O3-δ, CaTi0,65Fe0,35O3-δceramic powders were synthesized by the polymeric precursor technique using CaCO3, SrCO3, C12H28O4Ti and Fe (NO3)3.9H2O. After calcination, each powder was heat treated at temperatures chosen according to data collected on thermogravimetric-differential thermal analysis experiments. The compositions were analyzed by X-ray diffraction for structural phase evaluation (either perovskite cubic or orthorhombic), laser scattering for determination of particle size distribution and average particle size, transmission electron microscopy (TEM) for observation of particle shape and average true size. Pressed powders sintered at 1250°C were analyzed by X-ray diffraction and X-ray fluorescence; their surfaces were observed by scanning probe microscopy (SPM) for topographical analysis of grains and grain boundaries. TEM results show that the powders consist of agglomerated nanoparticles. Sr-based compounds have cubic perovskite phases whereas Ca-based compounds are orthorhombic. SPM images show intergranular features which might be responsible for reported blocking of charge carriers observed in impedance spectroscopy diagrams.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1756 ◽  
Author(s):  
Hongdan Ma ◽  
Dongyan Guo ◽  
Yu Fan ◽  
Jing Wang ◽  
Jiangxue Cheng ◽  
...  

Paeonol exhibits a wide range of pharmacological activities, such as anti-inflammatory, antidiabetic as well as pain-relieving activities. However, its intrinsic properties, such as low water solubility, poor stability and low oral bioavailability, restrict its clinical application. The current study aimed to optimize paeonol-loaded ethosomal formulation and characterize it in terms of encapsulation efficiency (EE), vesicle size (VS), zeta potential (ZP) and polydispersity index (PDI), in addition to differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) studies. Here, paeonol-loaded ethosomes were prepared by the injection method and optimized by the single-factor test and central composite design-response surface methodology. The optimized paeonol-loaded ethosomes had an EE of 84.33 ± 1.34%, VS of 120.2 ± 1.3 nm, negative charge of −16.8 ± 0.36 mV, and PDI of 0.131 ± 0.006. Ethosomes showed a spherical morphology under the transmission electron microscope (TEM). DSC, XRD and FT-IR results indicated that paeonol was successfully incorporated into the ethosomes. In-vitro transdermal absorption and skin retention of paeonol from paeonol-loaded ethosomes were 138.58 ± 9.60 µg/cm2 and 52.60 ± 7.90 µg/cm2, respectively. With reasonable skin tolerance, ethosomes could be a promising vehicle for transdermal delivery of paeonol.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Fatemeh Mirjalili ◽  
Luqman Chuah Abdullah ◽  
Hasmaliza Mohamad ◽  
A. Fakhru'l-Razi ◽  
A. B. Dayang Radiah ◽  
...  

This paper is trying to explore the effect of stirring time on the synthesis of nano-α-Alumina particles. In this study, alumina nanoparticles were synthesized through alkoxide route using sol-gel method, where aqueous solutions of aluminum isopropoxide and 0.5 M aluminum nitrate nanohydrate were used for preparing alumina sol. Sodium dodecylbenzen sulfonate (SDBS) was used as the surfactant stabilizing agent. The prepared solution was stirred at different times (24, 36, 48, and 60 hours) at 60°C. The Samples were, then, characterized by X-ray diffraction, thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Transmission Electron Microscopy(TEM) . The introduction of different stirring times affected the particle size and shape and the degree of aggregation. By increasing the stirring time, (starting from 24 to 48 hours) the particle size decreased, but agglomeration became hard for 60 hours of stirring time. The finest particle size (20–30 nm) was obtained at 48-hour stirring time.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1008 ◽  
Author(s):  
Qilei Yang ◽  
Chang Zu ◽  
Wengang Li ◽  
Weiwei Wu ◽  
Yunlong Ge ◽  
...  

Paclitaxel (PTX) is a poor water-soluble antineoplastic drug with significant antitumor activity. However, its low bioavailability is a major obstacle for its biomedical applications. Thus, this experiment is designed to prepare PTX crystal powders through an antisolvent precipitation process using 1-hexyl-3-methylimidazolium bromide (HMImBr) as solvent and water as an antisolvent. The factors influencing saturation solubility of PTX crystal powders in water in water were optimized using a single-factor design. The optimum conditions for the antisolvent precipitation process were as follows: 50 mg/mL concentration of the PTX solution, 25 °C temperature, and 1:7 solvent-to-antisolvent ratio. The PTX crystal powders were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography–mass spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy, solid-state nuclear magnetic resonance, and dissolution and oral bioavailability studies. Results showed that the chemical structure of PTX crystal powders were unchanged; however, precipitation of the crystalline structure changed. The dissolution test showed that the dissolution rate and solubility of PTX crystal powders were nearly 3.21-folds higher compared to raw PTX in water, and 1.27 times higher in artificial gastric juice. Meanwhile, the bioavailability of PTX crystal increased 10.88 times than raw PTX. These results suggested that PTX crystal powders might have potential value to become a new oral PTX formulation with high bioavailability.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document