scholarly journals Optimised Method for Short-Chain Fatty Acid Profiling of Bovine Milk and Serum

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 436
Author(s):  
Cheng Li ◽  
Zhiqian Liu ◽  
Carolyn Bath ◽  
Leah Marett ◽  
Jennie Pryce ◽  
...  

Short-chain fatty acids (SCFA, C2-C5) in milk and serum are derived from rumen bacterial fermentation and, thus, have the potential to be used as biomarkers for the health status of dairy cows. Currently, there is no comprehensive and validated method that can be used to analyse all SCFAs in both bovine serum and milk. This paper reports an optimised protocol, combining 3-nitrophenylhydrazine (3-NPH) derivatisation and liquid chromatography-mass spectrometry (LC-MS) analysis for quantification of SCFA and β-hydroxybutyric acid (BHBA) in both bovine milk and bovine serum. This method is sensitive (limit of detection (LOD) ≤ 0.1 µmol/L of bovine milk and serum), accurate (recovery 84–115% for most analytes) and reproducible (relative standard deviation (RSD) for repeated analyses below 7% for most measurements) with a short sample preparation step. The application of this method to samples collected from a small cohort of animals allowed us to reveal a large variation in SCFA concentration between serum and milk and across different animals as well as the strong correlation of some SCFAs between milk and serum samples.

1995 ◽  
Vol 78 (3) ◽  
pp. 659-662 ◽  
Author(s):  
Mark R Coleman ◽  
James S Peloso ◽  
John W Moran

Abstract A microbiological agar plate assay is described for determination of tilmicosin in bovine blood serum. The serum or serum dilution is added directly to wells cut in the agar plates. Tilmicosin activity is determined by measuring the zone of bacterial growth inhibition in agar medium inoculated with Micrococcus luteus, ATCC 9341. The assay was validated by evaluating the following parameters: accuracy, precision, linearity, parallelism, ruggedness, storage stability, and relative activity of isomers. Accuracy was evaluated with freshly collected bovine serum and with commercially available sera. Recoveries ranged from 93.4 to 97.5% across a fortification range of 0.08 to 1.28 μg/mL. Precision was estimated over a 6-day period with serum obtained from a tilmicosin-treated animal. Relative standard deviations were 0.63 to 3.13% within day and 5.23% across 6 days. Standard curves were linear with little variation in slope. No parallelism was observed between tilmicosin in serum and tilmicosin in buffered saline. The limit of detection was estimated to be 0.05 μg/mL, and the validated limit of quantitation was 0.08 μg/mL. Ruggedness was evaluated with different lots of antibiotic medium, different lots of sera, and different analysts. These variables did not affect method performance. Analyses of tilmicosin in frozen sera demonstrated that tilmicosin is stable for up to 16 days when stored at −20°C. A comparison of the relative microbiological activities of the purified cis and trans isomers of tilmicosin to that of the reference standard indicated no differences in microbiological activities, and showed a parallel response among the 3. The validation data demonstrate that this method is a rugged, reliable, and simple assay for tilmicosin in serum.


Author(s):  
Sarah K Kirschner ◽  
Gabriella A.M. Ten Have ◽  
Marielle P.K.J. Engelen ◽  
Nicolaas E.P. Deutz

The short-chain fatty acids (SCFAs) acetate, propionate, butyrate, isovalerate, and valerate are end products of intestinal bacterial fermentation and important mediators in the interplay between the intestine and peripheral organs. To unravel the transorgan fluxes and mass balance comparisons of SCFAs, we measured their net fluxes across several organs in a translational pig model. In multi-catheterized conscious pigs (n=12, 25.6 (95% CI [24.2, 26.9]) kg, 8-12 weeks old), SCFA fluxes across portal drained viscera (PDV), liver, kidneys, and hindquarter (muscle compartment) were measured after an overnight fast and in the postprandial state, 4 h after administration of a fiber-free, mixed meal. PDV was the main releasing compartment of acetate, propionate, butyrate, isovalerate, and valerate during fasting and in the postprandial state (all P=0.001). Splanchnic acetate release was high due to the absence of hepatic clearance. All other SCFAs were extensively taken up by the liver (all P<0.05). Even though only 7% [4, 10] (propionate), 42% [23, 60] (butyrate), 26% [12, 39] (isovalerate), and 3% [0.4, 5] (valerate) of PDV release were excreted from the splanchnic area in the fasted state, splanchnic release of all SCFAs was significant (all P≤0.01). Splanchnic propionate, butyrate, isovalerate and valerate release remained low but significant in the postprandial state (all P<0.01). We identified muscle and kidneys as main peripheral SCFA metabolizing organs, taking up the majority of all splanchnically released SCFAs in the fasted state and in the postprandial state. We conclude that the PDV is the main SCFA releasing and the liver the main SCFA metabolizing organ. Splanchnically released SCFAs appear to be important energy substrates to peripheral organs not only in the fasted but also in the postprandial state.


2005 ◽  
Vol 33 (1) ◽  
pp. 237-240 ◽  
Author(s):  
V. Ganapathy ◽  
E. Gopal ◽  
S. Miyauchi ◽  
P.D. Prasad

SLC5A8 is a candidate tumour suppressor gene that is silenced in colon cancer, gastric cancer and possibly other cancers in humans. This gene codes for a transporter belonging to the Na+/glucose co-transporter gene family (SLC5). The cancer-associated silencing of the gene involves hypermethylation of CpG islands present in exon 1 of the gene. SLC5A8 is expressed in colon, ileum, kidney and thyroid gland. The protein coded by the gene mediates the Na+-coupled and electrogenic transport of a variety of monocarboxylates, including short-chain fatty acids, lactate and nicotinate. It may also transport iodide. The normal physiological function of this transporter in the intestinal tract and kidney is likely to facilitate the active absorption of short-chain fatty acids, lactate and nicotinate. One of the short-chain fatty acids that serves as a substrate for SLC5A8 is butyrate. This fatty acid is an inhibitor of histone deacetylases and is known to induce apoptosis in a variety of tumours including colonic tumour. Since butyrate is produced in the colonic lumen at high concentrations by bacterial fermentation of dietary fibre, we speculate that the ability of SLC5A8 to mediate the entry of this short-chain fatty acid into colonic epithelial cells underlies the potential tumour suppressor function of this transporter.


Author(s):  
Fatema Moni ◽  
Suriya Sharmin ◽  
Satyajit Roy Rony ◽  
Farhana Afroz ◽  
Shammi Akhter ◽  
...  

AbstractThis study describes the development and validation of a simple, specific, accurate, and precise method for quantitative determination of Esomeprazole in human serum using Pantoprazole as internal standard (IS). After the addition of internal standard, Esomeprazole from serum samples was extracted simply by protein precipitation method followed by centrifugation and the supernatants were directly injected into the high performance liquid chromatography (HPLC). The chromatographic separation of the compounds was obtained on Hitachi Lachrom C8 column (5 µm, 250 × 4.6 mm) with a mobile phase consisting of 5 mM potassium dihydrogen phosphate pH 7.4 and acetonitrile in a ratio of 70:30 with UV detection at 302 nm with a flow rate of 1 mL/min. The method was sensitive and specific, and validated over a concentration range of 0.06–6.0 µg/mL. The limit of detection (LOD) and lower limit of quantification (LOQ) was 0.03 µg/mL and 0.06 µg/mL, respectively. The precision and accuracy expressed as relative standard deviation were less than 15%. The average recovery of Esomeprazole from serum was 97.08%.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
Fabrizio Montecucco ◽  
Giorgio Luciano Viviani

In type 2 diabetes, hyperglycemia, insulin resistance, increased inflammation, and oxidative stress were shown to be associated with the progressive deterioration of beta-cell function and mass. Short-chain fatty acids (SCFAs) are organic fatty acids produced in the distal gut by bacterial fermentation of macrofibrous material that might improve type 2 diabetes features. Their main beneficial activities were identified in the decrease of serum levels of glucose, insulin resistance as well as inflammation, and increase in protective Glucagon-like peptide-1 (GLP-1) secretion. In this review, we updated evidence on the effects of SCFAs potentially improving metabolic control in type 2 diabetes.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Hossein Bahramipur ◽  
Fahimeh Jalali

Chlorpromazine was used as a homogeneous electrocatalyst in the oxidation of captopril. The anodic peak current of chlorpromazine was increased substantially in the presence of low concentrations of captopril (pH 4). Cyclic voltammetry and chronoamperometry were used to study the kinetics of the catalytic electron transfer reaction. The values of electron transfer coefficient () and catalytic rate constant () were estimated to be 0.34 and , respectively. Linear sweep voltammetry was used for the determination of captopril in the presence of chlorpromazine. A linear calibration curve was obtained in the concentration range of captopril of 10.0–300.0 μM, with a limit of detection of 3.65 μM. The relative standard deviation (RSD%) for 5 replicate measurements of captopril (100 μM) was 1.96%. The method was applied to the determination of captopril in pharmaceutical formulations and blood serum samples with satisfactory results.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5739
Author(s):  
Lin-Xiu Guo ◽  
Yue Tong ◽  
Jue Wang ◽  
Guo Yin ◽  
Hou-Shuang Huang ◽  
...  

Short-chain fatty acids (SCFAs) are the main microbial fermentation products from dietary fibers in the colon, and it has been speculated that they play a key role in keeping healthy in the whole-body. However, differences in SCFAs concentration in the serum and colon samples had attracted little attention. In this study, we have optimized the extract and analysis methods for the determination of ten SCFAs in both serum and colon content samples. Methanol and acetonitrile were chosen for extraction of SCFAs from serum and colon content samples, respectively. Biological samples were collected from Alzheimer’s disease rats treated by extract of Schisandra chinensis (Turcz.) Baill (SC-extract) were taken as research objects. The results showed that, the relative peak intensities of SCFAs in the colon content from all groups were quite similar, and the trend was identical in the serum samples. Compared with the values in humans, the ratio of ten SCFAs in rat’s colon was similar, while the percent of acetate in rat’s serum was significantly higher. For therapy of Alzheimer’s disease (AD), SC-extract decreased the concentration of butyrate, 3-Methyvalerate, and caproate in the serum samples towards the trend of normal rats. This study may help our understanding of how SCFAs are transported across colonic epithelium in healthy and diseased organisms.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Melaku Metto ◽  
Samrawit Eramias ◽  
Bekele Gelagay ◽  
Alemayehu P. Washe

Screen printed carbon electrodes (SPCEs) provide attractive opportunity for sensitive and selective determination target analytes in clinical samples. The aim of the current work was to develop SPCEs based sensor for the determination of uric acid in clinical serum samples. The electrodes were pretreated by soaking in N,N-dimethylformamide for 5 minutes followed by drying in an oven at 100°C for 20 mins. The effect of surface pretreatment was characterized using cyclic voltammetry. The current response of uric acid detection was improved by a factor of 3.5 in differential pulse voltammetric measurement compared to unmodified electrode. Under the optimized conditions, the sensor displayed two dynamic linear ranges 5-100 μM and 100-500 μM with correlation coefficient, R2, values of 0.98782 and 0.97876, respectively. The limit of detection and limit of quantification calculated using the dynamic linear range 5-100 μM were 1.9 x 10−7 M and 6.33 x 10−7 M, respectively. The developed sensor displayed well separated and discerned peaks for UA in presence of the potential interferent (ascorbic acid and citric acid). The electrode was successfully applied for the detection of very low level of UA in clinical serum samples in a phosphate buffer solution (pH = 7). The proposed sensor showed a very high reproducibility and repeatability with the relative standard deviation of 0.9%. In conclusion, a simple and low cost sensor based on SPCEs is developed for sensitive and selective detection of uric acid in clinical samples.


2006 ◽  
Vol 76 (2) ◽  
pp. 57-64 ◽  
Author(s):  
Hsien-Tsung Yao ◽  
Meng-Tsan Chiang

Chitosan has been shown to have lipid-lowering effects, but little is known about the effect of chitosan on colonic pH value and short-chain fatty acid (SFCA) concentration. This study was designed to investigate the effect of chitosan on colonic bacterial fermentation and fecal bacterial enzyme activity in rats fed a diet enriched in cholesterol. Male Sprague-Dawley rats were fed a diet containing 5% cellulose (CE) or 5% chitosan (CS) for 15 days. Significantly increased fecal cholesterol and triacylglycerols contents were observed in rats fed the chitosan diet. In addition, lower cecal acetate and butyrate concentrations and higher fecal acetate, propionate, and butyrate concentrations were observed in rats fed the CS diet when compared to those fed the CE diet. Although rats fed with the CS diet exhibited an elevated cecal (cecum with contents) weight and higher pH value, no significant difference in fecal pH value was observed between the CE group and the CS group. Chitosan significantly decreased fecal mucinase and beta-glucuronidase activities. Results from this study show that chitosan may alter fecal bacterial enzyme activities and SCFA concentrations and the beneficial effects of chitosan on the colonic environment may occur in the distal colon in rats.


Sign in / Sign up

Export Citation Format

Share Document