scholarly journals New Analogs of Polyamine Toxins from Spiders and Wasps: Liquid Phase Fragment Synthesis and Evaluation of Antiproliferative Activity

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 447
Author(s):  
Christos Vassileiou ◽  
Stefania Kalantzi ◽  
Eleanna Vachlioti ◽  
Constantinos M. Athanassopoulos ◽  
Christos Koutsakis ◽  
...  

Polyamine toxins (PATs) are conjugates of polyamines (PAs) with lipophilic carboxylic acids, which have been recently shown to present antiproliferative activity. Ten analogs of the spider PATs Agel 416, HO-416b, and JSTX-3 and the wasp PAT PhTX-433 were synthesized with changes in the lipophilic head group and/or the PA chain, and their antiproliferative activity was evaluated on MCF-7 and MDA-MB-231 breast cancer cells, using Agel 416 and HO-416b as reference compounds. All five analogs of PhTX-433 were of very low activity on both cell lines, whereas the two analogs of JSTX-3 were highly active only on the MCF-7 cell line with IC50 values of 2.63–2.81 μΜ. Of the remaining three Agel 416 or HO-416b analogs, only the one with the spermidine chain was highly active on both cells with IC50 values of 3.15–12.6 μM. The two most potent compounds in this series, Agel 416 and HO-416b, with IC50 values of 0.09–3.98 μΜ for both cell lines, were found to have a very weak cytotoxic effect on the MCF-12A normal breast cells. The present study points out that the structure of both the head group and the PA chain determine the strength of the antiproliferative activity of PATs and their selectivity towards different cells.

2018 ◽  
Vol 9 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Chandrakant Pawar ◽  
Dattatraya Pansare ◽  
Devanand Shinde

In the present work, we report the synthesis of a series of 3-(substituted phenyl)-N-(2-hydroxy-2-(substituted-phenyl)ethyl)-N-methylthiophene-2-sulfonamide derivatives through Suzuki and Buchwald reaction. We have optimized methodology for targets from milligram to multi-gram scale. The newly synthesized compounds were characterized by 1H NMR, 19F NMR, 13C NMR, LC-MS techniques and purity was further checked by HPLC. The compounds were evaluated for their in-vitro antiproliferative activity against MCF-7, HeLa, A-549 and Du-145 cancer cell lines by CCK-8 assay. The preliminary bioassay suggests that most of the compounds show antiproliferation with different degrees and 5-fluorouracil was used as positive control. Among these compounds 2d, 2g, 2i, 4e, 4h and 4k are most active compared to the standard. All the synthesized compounds show IC50 values from 1.82-9.52 µM in different cell lines. Amongst these, compounds 2d, 2g, 2i, 4e, 4h and 4k were most potent, with IC50 values ranging from 1.82-4.28 µM in different cell lines.


2019 ◽  
Vol 19 (4) ◽  
pp. 538-545 ◽  
Author(s):  
Maher A. El-hashash ◽  
Amira T. Ali ◽  
Rasha A. Hussein ◽  
Wael M. El-Sayed

Background: The genetic heterogeneity of tumor cells and the development of therapy-resistant cancer cells in addition to the high cost necessitate the continuous development of novel targeted therapies. Methods: In this regard, 14 novel benzoxazinone derivatives were synthesized and examined for anticancer activity against two human epithelial cancer cell lines; breast MCF-7 and liver HepG2 cells. 6,8-Dibromo-2- ethyl-4H-benzo[d][1,3]oxazin-4-one was subjected to react with nitrogen nucleophiles to afford quinazolinone derivatives and other related moieties (3-12). Benzoxazinone 2 responds to attack with oxygen nucleophile such as ethanol to give ethyl benzoate derivative 13. The reaction of benzoxazinone 2 with carbon electrophile such as benzaldehyde derivatives afforded benzoxazinone derivatives 14a and 14b.The structure of the prepared compounds was confirmed with spectroscopic tools including IR, 1H-NMR, and 13C-NMR. Results: Derivatives 3, 9, 12, 13, and 14b exhibited high antiproliferative activity and were selective against cancer cells showing no toxicity in normal fibroblasts. Derivative 3 with NH-CO group in quinazolinone ring was effective only against breast cells, while derivative 12 with NH-CO group in imidazole moiety was only effective against liver cells probably through arresting cell cycle and enabling repair mechanisms. The other derivatives (9, 13, and 14b) had broader antiproliferative activity against both cell lines. These derivatives enhance the expression of the p53 and caspases 9 and 3 to varying degrees in both cell lines. Derivative 14b caused the highest induction in the investigated genes and was the only derivative to inhibit the EGFR activity. Conclusions: The unique features about derivative 14b could be attributed to its high lipophilicity, high carbon content, or its extended conjugation through planar aromatic system. More investigations are required to identify the lead compound(s) in animal models.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2708 ◽  
Author(s):  
Hessa H. Al Rasheed ◽  
Azizah M. Malebari ◽  
Kholood A. Dahlous ◽  
Ayman El-Faham

A new series of s-triazine hydrazone derivatives was prepared based on the reaction of 6-hydrazino-2,4-disubstituted-s-triazine with p-substituted benzaldehyde derivatives using a straightforward synthetic pathway. The antiproliferative activity of all synthesized compounds was evaluated against two human cancer cell lines; breast cancer MCF-7 and colon carcinoma HCT-116 using MTT assay. Among all, 11 compounds have shown strong to moderate antiproliferative activity with IC50 values in the range 1.01–18.20 µM in MCF-7 and 0.97–19.51 µM in HCT-116. The best results were obtained with 4,4’-(6-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3,5-triazine-2,4-diyl) dimorpholine 11 (IC50 = 1.0 µM and 0.98 µM in MCF-7 and HCT-116 cell lines, respectively). The substituents on the s-triazine core as well as the substituent at the benzylidene moiety have a great effect on the antiproliferative activity. Whereas compounds containing dimorpholino-s-triazine derivatives 8a–e showed more potent antiproliferative in MCF-7 compared to their analogs 7a–f (compounds containing two-piperidine rings), compounds containing one piperidine and one morpholine ring 9a–f showed better IC50 values in the range 10.4–22.2 µM. On the other hand, compounds containing two-piperidine rings 7a–f showed more potent antiproliferative in HCT-116 (IC50 values in the range 8.8–19.5 µM) than their analogs 8a–e and 9a–f.


2020 ◽  
Vol 16 (2) ◽  
pp. 176-191
Author(s):  
Vassiliki Giannouli ◽  
Nikolaos Lougiakis ◽  
Ioannis K. Kostakis ◽  
Nicole Pouli ◽  
Panagiotis Marakos ◽  
...  

Background: Purine isosteres are often endowed with interesting pharmacological properties, due to their involvement in cellular processes replacing the natural purines. Among these compounds, pyrazolopyridines are under active investigation for potential anticancer properties. Objective: Based on previously discovered substituted pyrazolopyridines with promising antiproliferative activity, we designed and synthesized new, suitably substituted analogues aiming to investigate their potential activity and contribute to SAR studies of this class of bioactive compounds. Methods: The new compounds were synthesized using suitably substituted 2-amino-4-picolines, which upon ring-closure provided substituted pyrazolo[3,4-c] pyridine-5-carbonitriles that served as key intermediates for the preparation of the target 3,5,7 trisubstituted derivatives. The antiproliferative activity of 31 new target derivatives was evaluated against three cancer cell lines (MIA PaCa-2, PC-3 and SCOV3), whereas cell-cycle perturbations of exponentially growing PC-3 cells, using three selected derivatives were also performed. Results: Eight compounds displayed IC50 values in the low μM range, allowing the extraction of interesting SAR’s. Two of the most potent compounds against all cell lines share a common pattern, by accumulating cells at the G0/G1 phase. From this project, a new carboxamidine-substituted hit has emerged. Conclusion: Among the new compounds, those possessing the 3-phenylpyrazolo[3,4-c]pyridine scaffold, proved to be worth investigating and the majority of them showed strong cytotoxic activity against all cell lines, with IC50 values ranging from 0.87-4.3 µM. A carboxamidine analogue that resulted from the synthetic procedure, proved to be highly active against the cancer cells and could be considered as a useful lead for further optimization.


2019 ◽  
Vol 16 (2) ◽  
pp. 117-121 ◽  
Author(s):  
Peipei Han ◽  
Wenhua Zhou ◽  
Mingxia Chen ◽  
Qiuan Wang

A series of eight polymethoxychalcone Mannich base derivatives 2a-2h was synthesized via the microwave-assisted Mannich reaction of natural product 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1) with various secondary amines and formaldehyde. Compared to conventional heating method (80°C), the microwave-assisted method (700W, 65°C) is efficient with short reaction time (0.5-1 h) and good yields (74-88%). The antiproliferative activities of eight Mannich base derivatives were evaluated in vitro on a panel of three human cancer cell lines (Hela, HCC1954 and SK-OV-3) by CCK-8 assay. The results showed that all of the Mannich base derivatives exhibited potential antiproliferative activities on tested cancer cell lines with the IC50 values of 9.13-48.51 µM. Some active compounds exhibited more activity as compared to positive control cis-Platin. Among them, compound 2b revealed to have the strongest antiproliferative activity against all the three cancer cell lines with IC50 values ranging from 9.13 to 11.24 µM.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3041
Author(s):  
Xiaohan Hu ◽  
Sheng Tang ◽  
Feiyi Yang ◽  
Pengwu Zheng ◽  
Shan Xu ◽  
...  

Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure–activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1561 ◽  
Author(s):  
Qiao ◽  
Khutsishvili ◽  
Alizade ◽  
Atha ◽  
Borris

A phytochemical investigation of the whole plant of Juniperus oblonga led to the isolationof one previously undescribed labdane diterpenoid, (4R,5S,9S,10R)‐13‐des‐ethyl‐13‐oxolabda‐8(17),11E‐dien‐19‐oic acid (1), together with nine known diterpenoids (2–3, 6–12), two lignans (4, 5),and a coumarin (13). The structures of all the compounds were elucidated on the basis ofspectrometric data, primarily one‐dimensional (1D)‐ and two‐dimensional (2D)‐NMR and massspectrometry. Electronic circular dichroism (ECD) calculations determined the absoluteconfiguration of 1. In addition, the isolated compounds were evaluated for their cytotoxic activityagainst three human tumor cell lines (HepG2, MCF‐7, and HeLa). 6,12‐Dihydroxyabieta‐5,8,11,13‐tetraen‐7‐one (6) showed moderate cytotoxicity against all three cell lines with IC50 values rangingfrom 24.41 μM to 58.39 μM and trilobinone (10) showed weaker activity with IC50 values rangingfrom 56.93 μM to 79.98 μM. None of the isolated diterpenoids have been previously reported fromJuniperus oblonga, and five compounds are here reported from the genus Juniperus for the first time.


2020 ◽  
Vol 32 (5) ◽  
pp. 1197-1202
Author(s):  
Consolacion Y. Ragasa ◽  
Glenn G. Oyong ◽  
Maria Carmen S. Tan ◽  
Mariquit M. De Los Reyes ◽  
Maria Ellenita G. De Castro

Ergosterol peroxide (1) and ergosterol (2) were commonly isolated as the major compounds of Philippine mushrooms. Sterols 1 and 2 from the dichloromethane extract of Geastrum triplex and Termitomyces clypeatus, respectively, were evaluated for their cytotoxic activities against four human cancer cell lines, viz., breast cancer (MCF-7), colon cancer (HT-29), leukemia (THP-1), and small lung cell carcinoma (H69PR), and a human normal cell line, human dermal fibroblast-neonatal (HDFn), using the PrestoBlue® cell viability assay. Compounds 1 and 2 exhibited the strongest activities against HT-29 with IC50 values of 1.79 and 2.98 μg/mL, respectively, while Zeocin gave an IC50 of 4.89 μg/mL. These compounds also exhibited strong antiproliferative effects against MCF-7 with IC50 values of 4.13 for 1 and 4.20 μg/mL for compound 2, comparable to Zeocin with IC50 = 3.68 μg/mL. Only moderate cytotoxicity resulted when compounds 1 and 2 were tested against H69PR with IC50 values of 7.78 and 6.83 μg/mL, respectively, while Zeocin exhibited an IC50 of 9.81 μg/mL. Furthermore, compounds 1 and 2 showed no effects against THP-1 (IC50 > 100 μg/mL), while Zeocin showed an IC50 of 4.73 μg/mL. Although compounds 1 and 2 have been reported to exhibit different bioactivities in previous studies, the cancer cell lines tested and/or the polarities of the solvents for extraction varied. Therefore, comparisons of the cytotoxic activities of compounds 1 and 2 with earlier studies could not be made extensively.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 10 ◽  
Author(s):  
Hehua Xiong ◽  
Jianxin Cheng ◽  
Jianqing Zhang ◽  
Qian Zhang ◽  
Zhen Xiao ◽  
...  

A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure–activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.


Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 618 ◽  
Author(s):  
Alessia Caso ◽  
Germana Esposito ◽  
Gerardo Della Sala ◽  
Joseph R. Pawlik ◽  
Roberta Teta ◽  
...  

Caribbean sponges of the genus Smenospongia are a prolific source of chlorinated secondary metabolites. The use of molecular networking as a powerful dereplication tool revealed in the metabolome of S. aurea two new members of the smenamide family, namely smenamide F (1) and G (2). The structure of smenamide F (1) and G (2) was determined by spectroscopic analysis (NMR, MS, ECD). The relative and the absolute configuration at C-13, C-15, and C-16 was determined on the basis of the conformational rigidity of a 1,3-disubstituted alkyl chain system (i.e., the C-12/C-18 segment of compound (1). Smenamide F (1) and G (2) were shown to exert a selective moderate antiproliferative activity against cancer cell lines MCF-7 and MDA-MB-231, while being inactive against MG-63.


Sign in / Sign up

Export Citation Format

Share Document