scholarly journals Surface Chemistry Study of the Interactions of Sesame Oil with Meibomian Films

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 464
Author(s):  
Petar Eftimov ◽  
Norihiko Yokoi ◽  
Georgi As. Georgiev

A possible approach for the treatment of meibomian gland disease (MGD) can be the supplementation of meibomian gland secretion (MGS) with nonpolar lipids (NPL) rich plant oils. Sesame oil (SO), approximately equal in monounsaturated fat (oleic acid, 40% of total) and polyunsaturated fat (linoleic acid, 42% of total), has shown multiple health benefits due to its anti-inflammatory and antioxidant effects. Thus, the interactions between SO and MGS in surface layers deserve further study. Therefore, pseudobinary films were formed with controlled MGS/SO molar ratios (0%, 10%, 30%, 50%, and 100% SO) at the air/water surface of the Langmuir trough over phosphate buffered saline (pH 7.4) subphase. Surface pressure (π)-area (A) isotherms and Brewster angle microscopy observations showed nonideal interactions where SO aggregates with MGS and complements the NPL stratum of the meibomian layers. The analysis of stress relaxation transients with Kohlrausch–Williams–Watts equation revealed that the supplementation of fixed amount of MGS with excess lipids via SO altered the dilatational elasticity of the films as reflected by the increase of the exponent β. Thus, SO with its unique combination of high oxidative stability and abundance of long polyunsaturated acyl chains might be a useful supplement to MGS layers.

2008 ◽  
Vol 20 (8) ◽  
pp. 900 ◽  
Author(s):  
Yoshiaki Nakamura ◽  
Yasuhiro Yamamoto ◽  
Fumitake Usui ◽  
Yusuke Atsumi ◽  
Yohei Ito ◽  
...  

The aim of the present study was to improve the efficiency of endogenous primordial germ cell (PGC) depletion and to increase the ratio of donor PGCs in the gonads of recipient chicken embryos. A sustained-release emulsion was prepared by emulsifying equal amounts of Ca2+- and Mg2+-free phosphate-buffered saline containing 10% busulfan solubilised in N,N-dimethylformamide and sesame oil, using a filter. Then, 75 μg per 50 μL busulfan sustained-release emulsion was injected into the yolk. To determine the depletion and repopulation of PGCs in the gonads after 6 days incubation, whole-mount immunostaining was performed. The busulfan sustained-release emulsion significantly reduced the number of endogenous PGCs compared with control (P < 0.05). Moreover, the busulfan sustained-release emulsion significantly depleted endogenous PGCs compared with other previously reported busulfan delivery systems (P < 0.05), but with less variation, suggesting that the sustained-release emulsion delivered a consistent amount of busulfan to the developing chicken embryos. The PGC transfer study showed that the proportion of donor PGCs in the gonads of busulfan sustained-release emulsion-treated embryos after 6 days incubation increased 28-fold compared with control. In conclusion, the results demonstrate that exogenous PGCs are capable of migrating and settling in gonads from which endogenous PGCs have been removed using a busulfan sustained-release emulsion.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 723-723
Author(s):  
Manali Joglekar ◽  
Pedro Quintana ◽  
Stephen Marcus ◽  
Jian Liu ◽  
Gowthami M. Arepally

Abstract Abstract 723 Recent studies indicate that multimolecular complexes of platelet factor 4 (PF4) and heparin (H) are central to the pathogenesis of Heparin-Induced Thrombocytopenia (HIT). PF4/H multimolecular complexes are recognized preferentially by HIT antibodies (Rauova, Blood 2005) and are potently immunizing in a murine immunization model (Suvarna, Blood 2005). Because PF4/H multimolecular complexes assemble through non-specific electrostatic interactions, we hypothesized that disruption of PF4/H charge-dependent interactions could reduce immune mediated complications. To test this hypothesis, we employed a minimally anticoagulant compound (2-O, 3-O desulfated heparin, or ODSH, ParinGenix, Inc.) and characterized the charge-dependent interactions of murine PF4 (mPF4), ODSH and unfractionated heparin (UFH). In chromogenic assays of thrombin (IIa) generation, UFH was >80-fold more potent than ODSH in inactivating heparin (IC50 of residual IIa generation for UFH=3.1 nM v. ODSH= 259 nM, (Figure 1A). However, when equimolar amounts of UFH or ODSH (1.7 mM) were tested in a PF4 neutralization assay (Saggin, Thrombosis and Haemostasis 1992), the amount of mPF4 required to neutralize 50% of the anticoagulant activity of ODSH (IC50) was 25μg/mL, as compared to 73μg/mL for UFH (~3-fold difference), indicating that charge-dependent interactions, but not anticoagulant activity, were preserved between PF4 and ODSH (Figure 1B). When ODSH was added at 2.5, 5 or 10 fold molar excess to a fixed amount of UFH (6nM) in the PF4 neutralization assay, a proportionate increase in the amount of PF4 was needed to neutralize UFH, indicating that ODSH promotes the anticoagulant effect of UFH through preferential binding of PF4. To further characterize the biophysical interactions of PF4, ODSH and UFH, we used spectrophotometry and zeta potential to study the multimolecular complex formation (Suvarna, Blood 2007). We noted that mPF4 and ODSH formed multimolecular complexes at molar ratios of 2:1, whereas mPF4 and UFH complexes occurred at molar ratios of 1:1. When increasing concentrations of ODSH were added to pre-formed PF4/H multimolecular complexes, we noted a decrease in absorbance with increasing amounts of ODSH, indicating disruption of PF4/H multimolecular complexes (Figure 1C). However, when increasing amounts of UFH was added to preformed PF4/ODSH multimolecular complexes, a plateau in signal was noted, suggesting a higher affinity of ODSH for PF4. In PF4/H immunoassays, incubation of ODSH (1μg/mL) with HIT antibodies was effective in reducing antibody binding by >50% as compared to wells without ODSH. HIT antibodies did not recognize hPF4 (10mg/mL) in complex with ODSH (0.4-3.2 mg/mL), indicating minimal cross-reactivity of HIT antibodies with PF4/ODSH complexes (Figure 1D). In summary, we show that ODSH, a minimally anticoagulant heparin, can disrupt PF4/H multimolecular complex formation through charge dependent interactions and interfere with HIT antibody binding. These studies suggest that manipulation of PF4:H charge interactions can be a potential therapeutic strategy in the management of HIT. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 465-471 ◽  
Author(s):  
Audrey Saint-Laurent ◽  
Nadine Boudreau ◽  
René C.-Gaudreault ◽  
Patrick Poyet ◽  
Michèle Auger

We have investigated the interaction between a new class of antineoplastic agents derived from arylchloroethylurea (CEU) and model membrane of dimyristoylphosphatidylcholine by deuterium nuclear magnetic resonance spectroscopy. The results indicate that the drug incorporates in the bilayer and causes an increase of the lipid acyl chain order, this effect being greater close to the interfacial region of the lipid bilayer. The increase in ordering is dependent on the nature (degree of ramification, length of the alkyl chain, and presence of a sulfur atom) as well as on the position of the R substituent and is correlated with the cytotoxicity of the drugs. More specifically, the more cytotoxic drugs, such as 4-sec-butyl CEU, are those having a bulky ramified substituent and those for which the ordering effect on the lipid bilayer is the smallest. On the other hand, the ordering effect is greater and seen all along the lipid acyl chains for the long-chain CEUs, such as n-hexadecyl CEU, which have been shown to have very weak cytotoxic activity. Finally, the results obtained as a function of the drug concentration indicate that the ordering effect is seen for lipid to drug molar ratios as low as 20:1.Key words: deuterium, NMR, membrane, arylchloroethylurea, liposome.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5483
Author(s):  
Michalina Zaborowska ◽  
Damian Dziubak ◽  
Dorota Matyszewska ◽  
Slawomir Sek ◽  
Renata Bilewicz

A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air–water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air–water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.


2019 ◽  
Vol 20 (14) ◽  
pp. 3431 ◽  
Author(s):  
Georgi As. Georgiev ◽  
Douglas Borchman ◽  
Petar Eftimov ◽  
Norihiko Yokoi

Elevated levels of acyl chain saturation of meibomian lipids are associated with enhanced tear film (TF) stability in infants to shortened TF breakup time with meibomian gland dysfunction. Thus, the effect of saturation on the surface properties of human TF lipids (TFLs) using a Langmuir surface balance and Brewster angle microscopy was studied. Lipid phase transitions were measured using infrared spectroscopy. The raise in the % of saturation resulted in thicker, and more elastic films at π = 12 mN/m, with the effects being proportional to the saturation level. At the same time, at lower (≤10 mN/m) π, the raise in saturation resulted in an altered spreading and modified structure of TFL layers. The strong impact of saturation on TFL surface properties correlated with a saturation induced increase of the TFL acyl chain order, phase transition temperature, and lipid–lipid interactions. The native TFL order and πmax were significantly greater, compared with native meibum collected from the same individual. Aggregation of lipids on the tear surface due to saturation was not as significant as it was for meibum. Although the surface pressure/area isotherms for TFL were similar for meibum, differences in rheology and phase transition parameters warrant the study of both.


Orbit ◽  
1988 ◽  
Vol 7 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Ahmad M. Mansour

2018 ◽  
Vol 19 (8) ◽  
pp. 2209 ◽  
Author(s):  
Yana Nencheva ◽  
Aparna Ramasubramanian ◽  
Petar Eftimov ◽  
Norihiko Yokoi ◽  
Douglas Borchman ◽  
...  

Elevated levels of acyl chain saturation of meibomian lipids are associated with vastly different effects: from enhanced tear film (TF) stability in infants to shortened TF breakup time in meibomian gland disease patients. Thus it is important to study the effect of saturation on the surface properties of human meibum (MGS). Therefore, MGS films (1, 2, 3, 4, 5, 10, 25, 50, 67, and 100% saturation) were spread at the air/water interface of a Langmuir surface balance. The layers’ capability to reorganize during dynamic area changes was accessed via the surface pressure (π)-area (A) compression isotherms and step/relaxation dilatational rheology studies. Film structure was monitored with Brewster angle microscopy. The raise in the % (at ≥10%) of saturation resulted in the formation of stiffer, thicker, and more elastic films at π ≥ 12 mN/m with the effects being proportional to the saturation level. At the same time, at low (≤10 mN/m) π the raise in saturation resulted in altered spreading and heterogeneous structure of MGS layers. The strong impact of saturation on MGS surface properties correlates with our recent spectroscopy study, which demonstrated that saturation induced increase of MGS acyl chain order, phase transition temperature, and cooperativity.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Xiu Wang ◽  
Xiaoxiao Lu ◽  
Jun Yang ◽  
Ruihua Wei ◽  
Liyuan Yang ◽  
...  

Purpose. This study aims to evaluate dry eye and ocular surface conditions of myopic teenagers by using questionnaire and clinical examinations.Methods. A total of 496 eyes from 248 myopic teenagers (7–18 years old) were studied. We administered Ocular Surface Disease Index (OSDI) questionnaire, slit-lamp examination, and Keratograph 5M. The patients were divided into 2 groups based on OSDI dry eye standard, and their ocular surfaces and meibomian gland conditions were evaluated.Results. The tear meniscus heights of the dry eye and normal groups were in normal range. Corneal fluorescein scores were significantly higher whereas noninvasive break-up time was dramatically shorter in the dry eye group than in the normal group. All three meibomian gland dysfunction parameters (i.e., meibomian gland orifice scores, meibomian gland secretion scores, and meibomian gland dropout scores) of the dry eye group were significantly higher than those of the normal group (P<0.0001).Conclusions. The prevalence of dry eye in myopic teenagers is 18.95%. Meibomian gland dysfunction plays an important role in dry eye in myopic teenagers. The Keratograph 5M appears to provide an effective noninvasive method for assessing ocular surface situation of myopic teenagers.


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 163 ◽  
Author(s):  
Michalis Xygkis ◽  
Emmanouil Gagaoudakis ◽  
Leila Zouridi ◽  
Olga Markaki ◽  
Elias Aperathitis ◽  
...  

Vanadium dioxide (VO2) is a well-known thermochromic material that can potentially be used as a smart coating on glazing systems in order to regulate the internal temperature of buildings. Most growth techniques for VO2 demand high temperatures (>250 °C), making it impossible to comply with flexible (polymeric) substrates. To overcome this problem, hydrothermally synthesized VO2 particles may be dispersed in an appropriate matrix, leading to a thermochromic coating that can be applied on a substrate at a low temperature (<100 °C). In this work, we reported on the thermochromic properties of a VO2/Poly-Vinyl-Pyrrolidone (PVP) nanocomposite. More specifically, a fixed amount of VO2 particles was dispersed in different PVP quantities forming hybrids of various VO2/PVP molar ratios which were deposited as films on fused silica glass substrates by utilizing the drop-casting method. The crystallite size was calculated and found to be 35 nm, almost independent of the PVP concentration. As far as the thermochromic characteristics are concerned, the molar ratio of the VO2/PVP nanocomposite producing VO2 films with the optimum thermochromic properties was 0.8. These films exhibited integral solar transmittance modulation (overall wavelengths) ΔTrsol = 0.35%–1.7%, infrared (IR) switching at 2000 nm ΔTrIR = 10%, visible transmittance at 550 nm TrVis = 38%, critical transition temperature TC = 66.8 °C, and width of transmittance hysteresis loop ΔTC = 6.8 °C. Moreover, the critical transition temperature was observed to slightly shift depending on the VO2/PVP molar ratio.


Sign in / Sign up

Export Citation Format

Share Document