scholarly journals Novel Foaming-Agent Free Insulating Geopolymer Based on Industrial Fly Ash and Rice Husk

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 531
Author(s):  
Samar Beaino ◽  
Peter El Hage ◽  
Rodolphe Sonnier ◽  
Sylvain Seif ◽  
Roland El Hage

This study highlights the synthesis of a new thermal insulating geopolymer based on the alkaline activation of fly ashes. A porous geopolymer material can be prepared without the addition of a foaming agent, using high ratio solution/ashes (activating solutions used are water, sodium or potassium hydroxide). In order to increase the porosity of the material and to make it more ecological, rice husks are incorporated into the formulation. The geopolymer materials were prepared at room temperature and dried at moderate temperature (105 °C) by a simple procedure. The microstructural characteristics of these new porous geopolymers were assessed by optical microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Infrared spectroscopy (FTIR) was used to confirm the geopolymerisation. The effect of the ratio solution/ashes and the percentage of the rice husk addition on thermal and mechanical analysis was evaluated. An insulating material for a solution/ashes ratio of 0.9 and a rice husk content of 15% having a λ value of 0.087 W/(m·K), a porosity of 61.4% and an Rc value of 0.1 MPa was successfully prepared.

2020 ◽  
Vol 1 (2) ◽  
pp. 58-63
Author(s):  
Qori Sari Dewi ◽  
◽  
Simon Sembiring ◽  
Syafriadi Syafriadi ◽  
Ediman Ginting ◽  
...  

Synthesis and characterization of rice husk and asphalt silica composites with various compositions have been carried out 20%: 80%, 15%: 85% and 10%: 90%. Silica synthesis from rice husk wa carried out using the sol-gel method. The materials used are rice husks, solid asphalt, distilled water, gasoline, NaOH and HNO3. This research was conducted of variations in the composition the effect of silica and asphalt on the microstructure and structure of the sample. The characterization results of Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) on the surface of silica asphalt composites in the form of erratic clots and cracks on the surface of the sample with an average grain size of 3.483 µm, 8,127 µm, and 7,192 µm. The analysis EDS results in the elements content contained in the sample elements of carbon (C), silicon (Si), oxygen (O), a little element of sulfur (S) and aluminum (Al). Then, the results of the X-Ray Diffraction (XRD) characterization obtained the structure of amorphous silica and amorphous carbon.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2020 ◽  
Vol 16 (2) ◽  
pp. 12
Author(s):  
Solihudin Solihudin ◽  
Haryono Haryono ◽  
Atiek Rostika Noviyanti ◽  
Muhammad Rizky Ridwansyah

<p>Komposit forsterit-karbon merupakan salah satu material modifikasi dari forsterit yang berpotensi memiliki sifat isolator panas baik. Karbon dalam komposit dapat mengisi cacat titik pada kristal forsterit. Arang sekam padi (residu gasifikasi) mengandung SiO2 amorf dan karbon yang tinggi. Penelitian ini bertujuan menentukan pengaruh suhu kalsinasi dalam medium gas inert (dengan pengaliran gas argon) terhadap karakteristik komposit forsterit-karbon dari arang sekam padi dan magnesium karbonat. Metode penelitian meliputi preparasi arang sekam padi hasil gasifikasi, dan sintesis forsterit-karbon. Proses sintesis komposit forsterit karbon dilakukan dengan cara mencampurkan arang sekam padi dengan kalium karbonat pada rasio mol magmesium terhadap silikon sebesar 2 : 1 kemudian dikalsinasi dengan suhu divariasikan (700, 800, 900, dan 1000 oC). Selanjutnya sampel hasil sintesis dikarakterisasi dengan Fourier-transform infrared (FTIR), X-ray diffraction (XRD), dan scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). Hasil karakterisasi dengan FTIR dan XRD diperoleh kesimpulan bahwa forsterit mulai terbentuk pada suhu kalisiasi 800 oC dan sempurna pada suhu 1000 oC, karenanya komposit yang terbentuk pada 1000 oC dimungkinkan sebagai forsterit-karbon, di mana unsur-unsur yang terkandung ditunjukkan oleh SEM-EDS.</p><p> </p><p><strong>The Effect of Calcination Temperature on the Characteristics of Forsterite-Carbon Composites Synthesized in Argon Gas Medium</strong>. Forsterite-carbon composite is one of the material modifications of forsterite, which potentially has a good heat insulation property. Carbon in composites can fill point defects in forsterite crystals. Rice husk charcoal, as gasification residues, contains high amorphous SiO2 and carbon. This study aims to determine the effect of temperature on the calcination of a mixture of rice husk charcoal and magnesium carbonate under an inert gas (argon gas) on the characteristics of the forsterite-carbon composite produced. The experimental research performed includes the preparation of gasified rice husk charcoal and the synthesis of the carbon-forsterite composite. The synthesis process of the carbon-forsterite composites was carried out by mixing rice husk charcoal with potassium carbonate at a mole ratio of magnesium to silicon of 2 : 1. The mixture was then calcined with varying temperatures (700, 800, 900, and 1000 °C). Furthermore, the synthesized sample was characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The FTIR and XRD analysis show that the forsterites began to form at a calcination temperature of 800 °C and perfectly formed at a temperature of 1000 °C; therefore, the composite formed at 1000 °C is possible as forsterite-carbon, in which the contained elements were indicated by SEM-EDS.</p>


2016 ◽  
Vol 869 ◽  
pp. 209-214 ◽  
Author(s):  
Iara Janaína Fernandes ◽  
Daiane Calheiro ◽  
Emanuele Caroline Araújo dos Santos ◽  
Roxane Oliveira ◽  
Tatiana Louise Avila de Campos Rocha ◽  
...  

The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (moving grate and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area, specific weight, and scanning electron microscopy. The results show that RHA may be used as a filler in several polymeric materials.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Neeraj Jain

Investigations carried out to study the effect of Cr (VI) (1000–3000 mg/l) on solidification and hydration behavior of Ordinary Portland cement (OPC) and rice husk ash (RHA) blended (10%, 20%, and 30%) cement show that addition of RHA accelerates final setting as compared to control samples (OPC) and retardation in setting time has been observed on increase in rice husk ash concentration (10%–30%). Solidification studies show that the compressive strength of controls and rice husk ash blended samples increases with increase in the curing period and maximum strength was observed with 20% RHA blended samples. With the increase in Cr (VI) concentrations, the strength of OPC and RHA blended samples decreases as compared to controls (without chromium). The results of Toxicity Characteristics Leaching Procedure (TCLP) test, (pH≅3), show that the retention capacity of OPC and RHA blended samples was in the range of 92% to 99% and the leached Cr (VI) concentration was under the allowable limit (5 mg/l) of U.S. EPA. The chemistry of influence of Cr (VI) on hydration of cement was examined by X-ray diffraction which shows the formation of various crystalline phases during solidification in rice hush ash blended cement.


1994 ◽  
Vol 358 ◽  
Author(s):  
K. Dovidenko ◽  
S. Oktyabrsky ◽  
J. Narayan ◽  
M. Razeghi

ABSTRACTThe microstructural characteristics of wide band gap semiconductor, hexagonal A1N thin films on Si(100), (111), and sapphire (0001) and (10ī2) were studied by transmission electron microscopy (TEM) and x-ray diffraction. The films were grown by MOCVD from TMA1 + NH3 + N2 gas mixtures. Different degrees of film crystallinity were observed for films grown on α-A12O3 and Si substrates in different orientations. The epitaxial growth of high quality single crystalline A1N film on (0001) α-Al2O3 was demonstrated with a dislocation density of about 2*10 10cm−2 . The films on Si(111) and Si(100) substrates were textured with the c-axis of A1N being perpendicular to the substrate surface.


2004 ◽  
Vol 808 ◽  
Author(s):  
Jarrod McDonald ◽  
Vikram L. Dalal ◽  
Max Noack

ABSTRACTWe report on the growth and fabrication of top gate thin film transistors at low temperatures in nanocrystalline Si:H. The nanocrystalline Si:H was deposited using a VHF-PECVD plasma process at 45 MHz in a diode reactor. The material was deposited from a mixture of silane and hydrogen at a temperature of 250-300°C. Higher temperatures resulted in a loss of hydrogen from the material. The properties of the nanocrystalline Si:H were studied using x-ray diffraction and Raman spectroscopy. The material showed a high ratio (3.8) between the crystalline and amorphous peaks in the Raman spectrum. X-ray diffraction data showed the films to be predominantly oriented in <111> direction, and the grain size estimated from Scherer's formula was in the range of 12-15 nm. The doping of the material could be changed by introducing ppm levels of Boron or Phosphorus. The as-grown material was generally n type. By adding controlled amounts of B, the material could be made p type. The devices made were n-channel MISFET's with p body. The n+ source and drain layers were made from amorphous Si:H. A systematic investigation of the appropriate oxide/nitride layer to be used was undertaken. The nitride layers were grown at 250-300°C using mixtures of silane and ammonia, with a high degree of dilution by helium. The presence of helium dilution, along with post-deposition passivation by a hydrogen plasma, was found to produce reproducible, low interface defect density nitride materials. Interface state densities were measured using capacitance spectroscopy at different frequencies and temperatures and found to be in the range of 4.5x1011/cm2-eV. The breakdown strength of the nitride was measured and found to be 4 MV/cm. Proof-of-concept TFT devices were fabricated using reactive ion etching. The threshold voltage was in the range of 13-15 V, and the on/off ratio was in the range of 103.


2012 ◽  
Vol 517 ◽  
pp. 430-436
Author(s):  
J.L. Akasaki ◽  
E.J. Silva ◽  
L.C. Sousa ◽  
J.L.P. Melges ◽  
M.M. Tashima ◽  
...  

Rice production in Brazil in 2010 was approximately 12,2 million tons, and to reach that amount several planting techniques were used with different strains of rice in different rice-growing areas. Since Rice Husk Ash (RHA) is the pozzolan of vegetable origin most studied by researchers working in the area of pozzolanic materials, the present paper evaluates the influence that the form of planting, the climate, the soil, the strain of rice and the origin/amount of nitrogen-based fertilizers used in rice cultivation has on the chemical composition and crystallographic properties of RHA. The results obtained in this paper, confirm the importance of carrying out routine chemical analysis and X-Ray diffraction to maintain the quality control of the CCAs produced, because in situations of large-scale production, husks of different origins may be used.


Sign in / Sign up

Export Citation Format

Share Document