scholarly journals Reaction of Amino-Terminated PAMAM Dendrimers with Carbon Dioxide in Aqueous and Methanol Solutions

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 540
Author(s):  
Beijun Cheng ◽  
Angel E. Kaifer

Polyamines have been used as active materials to capture carbon dioxide gas based on its well-known reaction with amines to form carbamates. This work investigates the reactions between three amino-terminated poly(amidoamine) (PAMAM) dendrimers (G1, G3 and G5) and CO2(g) in aqueous (D2O) and methanolic (CD3OD) solutions. The reactions were monitored using 1H NMR spectroscopy, and yielded dendrimers with a combination of terminal carbamate and terminal ammonium groups. In aqueous media the reaction was complicated by the generation of soluble carbonate and bicarbonate ions. The reaction was cleaner in CD3OD, where the larger G5 dendrimer solution formed a gel upon exposure to CO2(g). All reactions were reversible, and the trapped CO2 could be released by treatment with N2(g) and mild heating. These results highlight the importance of the polyamine dendrimer size in terms of driving changes to the solution’s physical properties (viscosity, gel formation) generated by exposure to CO2(g).

2020 ◽  
Vol 59 (SK) ◽  
pp. SKKD08
Author(s):  
Yuya Kitamura ◽  
Hirokazu Okawa ◽  
Takahiro Kato ◽  
Katsuyasu Sugawara

2016 ◽  
Author(s):  
Ernie R. Slucher ◽  
◽  
Peter D. Warwick ◽  
Christina A. DeVera ◽  
Celeste D. Lohr ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2615 ◽  
Author(s):  
Andreas Lorek ◽  
Jacek Majewski

In experimental chambers for simulating the atmospheric near-surface conditions of Mars, or in situ measurements on Mars, the measurement of the humidity in carbon dioxide gas at low temperature and under low pressure is needed. For this purpose, polymer-based capacitive humidity sensors are used; however, these sensors are designed for measuring the humidity in the air on the Earth. The manufacturers provide only the generic calibration equation for standard environmental conditions in air, and temperature corrections of humidity signal. Because of the lack of freely available information regarding the behavior of the sensors in CO2, the range of reliable results is limited. For these reasons, capacitive humidity sensors (Sensirion SHT75) were tested at the German Aerospace Center (DLR) in its Martian Simulation Facility (MSF). The sensors were investigated in cells with a continuously humidified carbon dioxide flow, for temperatures between −70 °C and 10 °C, and pressures between 10 hPa and 1000 hPa. For 28 temperature–pressure combinations, the sensor calibration equations were calculated together with temperature–dependent formulas for the coefficients of the equations. The characteristic curves obtained from the tests in CO2 and in air were compared for selected temperature–pressure combinations. The results document a strong cross-sensitivity of the sensors to CO2 and, compared with air, a strong pressure sensitivity as well. The reason could be an interaction of the molecules of CO2 with the adsorption sites on the thin polymeric sensing layer. In these circumstances, an individual calibration for each pressure with respect to temperature is required. The performed experiments have shown that this kind of sensor can be a suitable, lightweight, and relatively inexpensive choice for applications in harsh environments such as on Mars.


Author(s):  
JA Reichert ◽  
K Nagao ◽  
CV Vinekar ◽  
DS Beebe ◽  
M Fowler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document