scholarly journals Enzymatic Hydrolysis of Bacterial Cellulose for the Production of Nanocrystals for the Food Packaging Industry

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 735
Author(s):  
Cesare Rovera ◽  
Filippo Fiori ◽  
Silvia Trabattoni ◽  
Diego Romano ◽  
Stefano Farris

Bacterial cellulose nanocrystals (BCNCs) obtained by enzymatic hydrolysis have been loaded in pullulan biopolymer for use as nanoparticles in the generation of high-oxygen barrier coatings intended for food packaging applications. Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was hydrolyzed by two different enzymatic treatments, i.e., using endo-1,4-β-glucanases (EGs) from Thermobifida halotolerans and cellulase from Trichoderma reesei. The hydrolytic activity was compared by means of turbidity experiments over a period of 145 h, whereas BCNCs in their final state were compared, in terms of size and morphology, by atomic force microscopy (AFM) and dynamic light scattering (DLS). Though both treatments led to particles of similar size, a greater amount of nano-sized particles (≈250 nm) were observed in the system that also included cellulase enzymes. Unexpectedly, transmission electron microscopy (TEM) revealed that cellulose nanoparticles were round-shaped and made of 4–5 short (150–180 nm) piled whiskers. Pullulan/BCNCs nanocomposite coatings allowed an increase in the overall oxygen barrier performance, of more than two and one orders of magnitude (≈0.7 mL·m−2·24 h−1), of pure polyethylene terephthalate (PET) (≈120 mL·m−2·24 h−1) as well as pullulan/coated PET (≈6 mL·m−2·24 h−1), with no significant difference between treatments (hydrolysis mediated by EGs or with the addition of cellulase). BCNCs obtained by enzymatic hydrolysis have the potential to generate high oxygen barrier coatings for the food packaging industry.

2017 ◽  
Vol 25 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Carmen Fernández Ayuso ◽  
Alejandro Arribas Agüero ◽  
Jose A. Plaza Hernández ◽  
Antonio Bódalo Santoyo ◽  
Elisa Gómez Gómez

“Layer by layer” technology was used to create transparent, thin and high barrier polyethylene films to use in food packaging. These films were made by inserting successive layers of polyacrylamide and montmorillonite (Cloisite Na+, non-organic modification) grown onto a low density polyethylene (LDPE) film substrate submitted to corona treatment. Excellent oxygen permeability results were reached with only 9 bilayers, with a reduction of 99.92%, compared to the pure polyethylene. This allowed the oxygen barrier film to change from poor to high (3.66 cm3/m2·day), with a total thickness of 48 microns, due to the structure formed over the film to create a tortuous path for oxygen molecules. Optical properties were analysed, showing a ≥92% transparency in all samples. Thermal stability of polyethylene was slightly improved and this was attributed to nanoclays presence forming an insulating layer. The result of this research is a thin structured film which is a good candidate for common barrier films replacement in food packaging thanks to its high oxygen barrier capacity, optical transparency, microwaveability and recyclability.


2017 ◽  
Vol 30 (10) ◽  
pp. 645-661 ◽  
Author(s):  
Riccardo Rampazzo ◽  
Derya Alkan ◽  
Stefano Gazzotti ◽  
Marco A. Ortenzi ◽  
Giulio Piva ◽  
...  

2009 ◽  
Vol 6 (S1) ◽  
pp. S700-S704 ◽  
Author(s):  
Joachim Schneider ◽  
Muhammad Iqbal Akbar ◽  
Jerôme Dutroncy ◽  
Dennis Kiesler ◽  
Martina Leins ◽  
...  

TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


2020 ◽  
Vol 2020 (15) ◽  
pp. 197-1-197-7
Author(s):  
Alastair Reed ◽  
Vlado Kitanovski ◽  
Kristyn Falkenstern ◽  
Marius Pedersen

Spot colors are widely used in the food packaging industry. We wish to add a watermark signal within a spot color that is readable by a Point Of Sale (POS) barcode scanner which typically has red illumination. Some spot colors such as blue, black and green reflect very little red light and are difficult to modulate with a watermark at low visibility to a human observer. The visibility measurements that have been made with the Digimarc watermark enables the selection of a complementary color to the base color which can be detected by a POS barcode scanner but is imperceptible at normal viewing distance.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 208
Author(s):  
Javier Brugés Martelo ◽  
Jan Lundgren ◽  
Mattias Andersson

The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspection by the process operators to assess the overall quality and functionality of the product. Defects such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the reel, affecting the sealable property of the product. To detect these defects locally, imaging systems must discriminate between the substrate and the coating. We propose an active full-Stokes imaging polarimetry for the classification of the PE-coated paperboard and its substrate (before applying the PE coating) from industrially manufactured samples. The optical system is based on vertically polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various parameters obtained by polarimetry measurements, we propose implementing feature selection based on the distance correlation statistical method and, subsequently, the implementation of a support vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution and pixel-wise metrological characteristics to provide polarization information, capable of material classification, can be used for in-process control of manufacturing coated paperboard.


2021 ◽  
Author(s):  
Vu Thi Tuyet Thuy ◽  
Lam Tan Hao ◽  
Hyeonyeol Jeon ◽  
Jun Mo Koo ◽  
Jaeduk Park ◽  
...  

Plastic packaging effectively protects food from mechanical, microbial, and chemical damage; however, oxygen and moisture permeate these plastics and spoil the food. Thus, the gas barrier function is usually imparted...


Sign in / Sign up

Export Citation Format

Share Document