scholarly journals Preparation of PBS/PLLA/HAP Composites by the Solution Casting Method: Mechanical Properties and Biocompatibility

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1778
Author(s):  
Muzamil Ahmad Khan ◽  
Zakir Hussain ◽  
Usman Liaqat ◽  
Muhammad Arman Liaqat ◽  
Muhammad Zahoor

The use of biodegradable polymeric scaffolds for tissue regeneration is becoming a common practice in the clinic. Therefore, an inclined trend is developing with regards to improving the mechanical properties of these scaffolds. Here, we aim to improve the mechanical properties of poly (butylene succinate) (PBS)/poly (l-lactic acid) (PLLA) blends by incorporating hydroxyapatite nanoparticles (HAP) in the blends to form composites. PBS/PLLA = 100/0, 95/5, 90/10, 85/15, and 0/100 wt% blends, along-with the loadings of a few mg of HAPs, were prepared using the solution casting method. A scanning electron microscope showed the voids and droplets, indicating the immiscibility of blends. Due to this immiscibility, the tensile strength values of the blends were found to be in between that of pure PBS (42.85 MPa) and pure PLLA (31.39 MPa). HAPs act as a compatibilizer by incorporating themselves in the voids and spaces caused by the immiscibility, thus increasing the overall tensile strength of the resulting composite to a certain extent, e.g., the tensile strength of PBS/PLLA = 95/5 loaded with 50 mg HAPs was found to be 51.16 MPa. The structural analysis employing the X-ray diffraction (XRD) patterns confirmed the formation of polymer blends and composites. The contact angle analysis showed that the addition of HAPs increased the hydrophilicity of the resulting composites. Selective samples were investigated based on mechanical properties to see if the blends and composites are biocompatible. The obtained results showed that all of the samples with better mechanical properties demonstrated good biocompatibility. This indicates the effectiveness of scaffolds for tissue regeneration.

2021 ◽  
Vol 2120 (1) ◽  
pp. 012004
Author(s):  
May Teng Hooi ◽  
Siew Wei Phang ◽  
Hui Ying Yow ◽  
Edmund David ◽  
Ning Xin Kim ◽  
...  

Abstract This paper presents the interaction comparison of poly(vinyl) alcohol (PVA) with hydroxyapatite derived from Spanish Mackerel (SM) and Whitefin Wolf Herring (WWH) bones, in different processing method. PVA filament and solution casting method illustrated higher crystallinity in the FTIR graph as compared to the PVA pellet and filament extrusion method. Besides, minimal interactions between PVA with glycerol and HAp was observed as well. PVA pellet and solution casting method portrait higher interaction as compared to the PVA filament and extrusion method. As for the HAp of SM and WWH, WWH had higher crystallinity and better cell adhesion with a higher Ca/P ratio while SM had relatively better mechanical strength with Ca/P ratio near to stoichiometric value. The loading of HAp (0, 2.5, 5, 10, 20, 30%) does not affect interactions of PVA/HAp composite in FTIR, and thermal properties in TGA. However, it caused an increase in crystallinity at low HAp loading and decreased at higher loading of HAp above 10%. Upon addition of HAp, tensile strength increased and elongation at break decreased. As the loading of HAp increased, both mechanical properties decreased. Scaffold with WWH composite possessed lower tensile strength and higher elongation at break than SM composite. The result of mechanical properties corresponded to the SEM result. ANOVA analysis justified the effect of HAp variations and loading on the mechanical properties of the composite was prominent.


2021 ◽  
pp. 096739112110111
Author(s):  
Rahim Eqra ◽  
Mohammad Hadi Moghim ◽  
Navid Eqra

The aims of this research are to elucidate the role of graphene oxide on the mechanical properties of epoxy and also to obtain an equation for the modeling of its behavior. Accordingly, graphene oxide/epoxy nanocomposite samples are fabricated using the solution casting method. Tensile, flexural, SEM and FTIR tests are conducted on epoxy and the nanocomposite samples afterwards. The obtained results show that the tensile strength of epoxy improves even at low contents of graphene oxide such that 0.3 wt.% of GO yields an improvement of approximately 11.5%. The flexural strength of epoxy is also enhanced by 5.8% with 0.5 wt.% GO. Then, it decreases due to the agglomeration with increasing the GO content. In order to predict the tensile strength of GO/epoxy nanocomposites, a modified Halpin–Tsai equation is obtained with a new introduced correction factor as K = 39.5 Vf 1.135exp(2.9−1644.6 Vf). The obtained equation is in good agreement with the experimental data.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


2021 ◽  
Vol 317 ◽  
pp. 426-433
Author(s):  
Siti Nurhaziqah Abd Majid ◽  
Afiqah Qayyum Ishak ◽  
Nik Aziz Nik Ali ◽  
Muhamad Zalani Daud ◽  
Hasiah Salleh

The development of biopolymer electrolytes based on methylcellulose (MC) has been accomplished by incorporating ammonium bromide (NB) to the polymer-salt system. The biopolymer electrolytes were prepared via solution-casting method. The conductivity and permittivity characteristics of the material were studied. The biopolymer-salt complex formation have been analysed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The conductivity of the sample was measured by EIS HIOKI. Upon addition of 20 wt.% of NB, highest conductivity of 3.25×10-4 μScm-1 was achieved at ambient temperature. The temperature dependence of the biopolymer electrolytes exhibit Arrhenius behaviour. This result had been further proven in FTIR study.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mohd Imran Ahamed ◽  
Inamuddin ◽  
Abdullah M. Asiri ◽  
Mohammad Luqman ◽  
Lutfullah

Poly(3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) zirconium(IV) phosphate (ZrP) based ionomeric membrane was prepared by a solution-casting method. Subsequently, aniline polymerization was carried out on the surface of the membrane by oxidative chemical polymerization. It was characterized by thermogravimetric analysis/differential thermal analysis/differential thermogravimetry (TGA/DTA/DTG), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, and Fourier-transform infrared (FTIR) spectroscopy. The membrane was also characterized by ion-exchange properties. The tip displacement investigation of the ionomeric membrane was also carried out. The outcomes demonstrated that the manufactured ionomeric membrane could produce generative strengths (tip powers), and consequently create good displacement. In this manner, the proposed ionomeric membrane was found proper for bending movement actuator that will give a successful and promising stage for smaller-scale mechanical applications.


2015 ◽  
Vol 1113 ◽  
pp. 19-22 ◽  
Author(s):  
Mohd Salleh Shahrul Nizam ◽  
Norzila Mohd ◽  
Zarina Omar ◽  
Norkamruzita Saadon

The tensile properties of starch fiber (SF) and native starch (NS) filled polyvinyl alcohol were investigated in this study. Polyvinyl Alcohol (PVA) was blend with starch fiber as well as native starch. Prior to compounding process, PVA was plasticized with 30 phr glycerol as well as 10 phr distilled water. A solution casting method was used to prepare the SF-PPVA and NS-PPVA film sheet. Based on the tensile test results SF filled PVA recorded the highest tensile strength (20.015 MPa) as compared to NS filled PVA (12.302MPa). The tensile strength of the blends film was depending to the interfacial adhesion between matrixes in the blends. In spite of that, NS filled PVA have noted the highest elongation during the test. SF and NS played important role in affecting the blends matrix through disturbing the arrangement of continuous phase of PVA.


RSC Advances ◽  
2016 ◽  
Vol 6 (50) ◽  
pp. 43855-43863 ◽  
Author(s):  
Junping Jia ◽  
Jinjun Yang ◽  
Yun Zhao ◽  
Hui Liang ◽  
Minfang Chen

Nanocomposites of biodegradable PLLA and magnesium oxide composite (PLLA/MgO-NPs) and surface modified magnesium oxide composite (PLLA/m-MgO-NPs) were prepared using a solution casting method.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


Sign in / Sign up

Export Citation Format

Share Document