scholarly journals Smart Nanomaterials for Biomedical Applications—A Review

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 396 ◽  
Author(s):  
Magdalena Aflori

Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called “smart” nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ziyu Ge ◽  
Luming Yang ◽  
Fang Xiao ◽  
Yani Wu ◽  
Tingting Yu ◽  
...  

Graphene family nanomaterials, with superior mechanical, chemical, and biological properties, have grabbed appreciable attention on the path of researches seeking new materials for future biomedical applications. Although potential applications of graphene had been highly reviewed in other fields of medicine, especially for their antibacterial properties and tissue regenerative capacities, in vivo and in vitro studies related to dentistry are very limited. Therefore, based on current knowledge and latest progress, this article aimed to present the recent achievements and provide a comprehensive literature review on potential applications of graphene that could be translated into clinical reality in dentistry.


2018 ◽  
Vol 25 (25) ◽  
pp. 2876-2893 ◽  
Author(s):  
Keheng Li ◽  
Xinna Zhao ◽  
Gang Wei ◽  
Zhiqiang Su

Fluorescent graphene quantum dots (GQDs) have attracted increasing interest in cancer bioimaging due to their stable photoluminescence (PL), high stability, low cytotoxicity, and good biocompatibility. In this review, we present the synthesis and chemical modification of GQDs firstly, and then introduce their unique physical, chemical, and biological properties like the absorption, PL, and cytotoxicity of GQDs. Finally and most importantly, the recent applications of GQDs in cancer bioimaging are demonstrated in detail, in which we focus on the biofunctionalization of GQDs for specific cancer cell imaging and real-time molecular imaging in live cells. We expect this work would provide valuable guides on the synthesis and modification of GQDs with adjustable properties for various biomedical applications in the future.


2020 ◽  
Vol 4 (2) ◽  
pp. 489-506 ◽  
Author(s):  
Yan Zhang ◽  
Yunchuan Qi ◽  
Sébastien Ulrich ◽  
Mihail Barboiu ◽  
Olof Ramström

Dynamic covalent polymers have emerged as intriguing, new materials with unique properties. In this article, their synthesis, properties, and applications in the biomedical field have been reviewed.


2019 ◽  
Vol 21 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Maciej Mrówka ◽  
Tomasz Machoczek ◽  
Paweł Jureczko ◽  
Małgorzata Szymiczek ◽  
Magdalena Skonieczna ◽  
...  

Abstract The purpose of the conducted study was to analyse new materials intended for contact with the human body in view of their physical, chemical and biological properties. The authors have put to test six commercially available materials, four out of which were composite polyamide 12-based materials, while two were polyurethanes. The examined materials were assessed in terms of the surface. Subsequently, their hardness and biocompatibility were tested. The authors devoted major attention to the tests of absorption and emissivity of water, the pH = 7.4 PBS buffer solution and pH = 4.3 artificial sweat in temperatures of 21°C and 37°C. The results of the tests have confirmed the non-toxicity of all the tested materials and allowed to provide their characteristics in terms of their surface, hardness, as well as absorption and emissivity of various body fluids. Both polyamide 12 and the tested polyurethanes are classified as thermoplastics that may be used in additive technology.


2007 ◽  
Vol 361-363 ◽  
pp. 1135-1138 ◽  
Author(s):  
Ingried Russoni Lima ◽  
Silvia R. A. Santos ◽  
D.L. Santiago ◽  
Antonella M. Rossi ◽  
José Mauro Granjeiro

Hydroxyapatite (HA) and apatite based biomaterials are important for bone replacement. Different apatites could be produced by substituting calcium, phosphate or hydroxyl groups, resulting in new materials with different physical, chemical and biological properties. In this work we investigate the biological compatibility of apatites modified by divalent cations in cultured mammalian cells using Balb/c 3T3 fibroblasts cell line. Modified apatites, Ca9.5M0.5(PO4)6(OH)2 (M=Fe, Zn, Cu, Co, Sr, V e Pb) and Ca10(VO4)6(OH)2 were produced and characterized by FTIR, XRD and XRF. Extracts of each metal-modified apatites (0.1mg/mL of Dulbeco Modified Eagle Medium – DMEM without serum) were obtained. Cells (3x104) were exposed for 24 h/37C to the pure extract (100%). Afterwards, the number of viable cells was determined in a hemocitometer. The number of viable cells in the absence of any extract was taking as 100%. SHA didn’t present any toxicity while phenol killed 82% of the cells. In the presence of pure extract of Fe-HA or Sr- HA an increase of 70% and 20%, respectively, in the number of relative cells was observed. On the other hand, the number of residual cells after treatment with the pure extract of Pb+2, Zn+2, Co+2, and (VO4)3- was73, 65, 48, and 21%, respectively. In conclusion, cells response was strongly dependent on the metal that substitutes calcium or phosphate. Further studies are required to better understand the biological effect of these substitutions.


Author(s):  
Kyung Min Park ◽  
Ki Dong Park ◽  
V. I. Sevastianov ◽  
E. A. Nemetz ◽  
V. N. Vasilets

In situ crosslinkable hydrogels have been widely used as therapeutic implants and vehicles for a broad range of biomedical applications including tissue regenerative medicine because of their biocompatibility and easiness of encapsulation of cells or signaling molecules during hydrogel formation. Recently, these hydrogel materials have been widely utilized as an artificial extracellular matrix (aECM) because of its structural similarity with the native extracellular matrix (ECM) of the human body and its multi-tunable properties. Various synthetic, natural, and semisynthetic hydrogels have been developed as engineered cellular microenvironments by using various crosslinking strategies. In this review, we discuss how in situ forming hydrogels are being created with tunable physical, chemical, and biological properties. In particular, we focus on emerging techniques to apply advanced hydrogel materials for engineered cellular microenvironments.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2998 ◽  
Author(s):  
Moises Bustamante-Torres ◽  
David Romero-Fierro ◽  
Belén Arcentales-Vera ◽  
Samantha Pardo ◽  
Emilio Bucio

In recent years, polymer nanocomposites produced by combining nanofillers and a polymeric matrix are emerging as interesting materials. Polymeric composites have a wide range of applications due to the outstanding and enhanced properties that are obtained thanks to the introduction of nanoparticles. Therefore, understanding the filler-matrix relationship is an important factor in the continued growth of this scientific area and the development of new materials with desired properties and specific applications. Due to their performance in response to a magnetic field magnetic nanocomposites represent an important class of functional nanocomposites. Due to their properties, magnetic nanocomposites have found numerous applications in biomedical applications such as drug delivery, theranostics, etc. This article aims to provide an overview of the filler-polymeric matrix relationship, with a special focus on magnetic nanocomposites and their potential applications in the biomedical field.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012008
Author(s):  
Thivya Baskaran ◽  
Nur Farahiyah Mohammad ◽  
Siti Shuhadah Md Saleh ◽  
Nashrul Fazli Mohd Nasir ◽  
Farah Diana Mohd Daud

Abstract Hydroxyapatite (HA) has drawn great attention to biomedical applications due to their bone mineral similarity, strong bioactivity, biocompatibility and osteoconductive. Despite the fact that HA has many advantages, several properties are still lacking, emphasising the crucial need for ion doping/substitution. Many attempts have been made to incorporate ions into HA structure to increase their physical, chemical, and biological properties. With such a diverse range of methods available for the synthesis of doped HA, this article discussed the importance of doping for HA and summarizes four common techniques used to prepare doped hydroxyapatites which include precipitation, hydrothermal, sol-gel and mechanochemical method.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1631
Author(s):  
Mariangela Guastaferro ◽  
Ernesto Reverchon ◽  
Lucia Baldino

A comparative analysis concerning bio-based gels production, to be used for tissue regeneration, has been performed in this review. These gels are generally applied as scaffolds in the biomedical field, thanks to their morphology, low cytotoxicity, and high biocompatibility. Focusing on the time interval 2015–2020, the production of 3D scaffolds of alginate, chitosan and agarose, for skin and bone regeneration, has mainly been investigated. Traditional techniques are critically reviewed to understand their limitations and how supercritical CO2-assisted processes could overcome these drawbacks. In particular, even if freeze-drying represents the most widespread drying technique used to produce polysaccharide-based cryogels, supercritical CO2-assisted drying effectively allows preservation of the nanoporous aerogel structure and removes the organic solvent used for gel preparation. These characteristics are essential for cell adhesion and proliferation.


Sign in / Sign up

Export Citation Format

Share Document