scholarly journals Effects of Nanoplastics on the Dinoflagellate Amphidinium carterae Hulburt from the Perspectives of Algal Growth, Oxidative Stress and Hemolysin Production

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2471
Author(s):  
Su-Chun Wang ◽  
Fei-Fei Liu ◽  
Tian-Yuan Huang ◽  
Jin-Lin Fan ◽  
Zhi-Yin Gao ◽  
...  

Recently, the effects of nanoplastics (NPs) on aquatic organisms have attracted much attention; however, research on the toxicity of NPs to microalgae has been insufficient. In the present study, the effects of polystyrene nanoplastics (nano-PS, 50 nm) on growth inhibition, chlorophyll content, oxidative stress, and algal toxin production of the marine toxigenic dinoflagellate Amphidinium carterae Hulburt were investigated. Chlorophyll synthesis was promoted by nano-PS on day 2 but was inhibited on day 4; high concentrations of nano-PS (≥50 mg/L) significantly inhibited the growth of A. carterae. Moreover, despite the combined effect of superoxide dismutase (SOD) and glutathione (GSH), high reactive oxygen species (ROS) level and malondialdehyde (MDA) content were still induced by nano-PS (≥50 mg/L), indicating severe lipid peroxidation. In addition, the contents of extracellular and intracellular hemolytic toxins in nano-PS groups were significantly higher than those in control groups on days 2 and 8, except that those of extracellular hemolytic toxins in the 100 mg/L nano-PS group decreased on day 8 because of severe adsorption of hemolytic toxins to the nano-PS. Hence, the effects of nano-PS on A. carterae are closely linked to nano-PS concentration and surface properties and exposure time. These findings provide a deep understanding of the complex effects of NPs on toxigenic microalgae and present valuable data for assessing their environmental risks.

2019 ◽  
Vol 68 (8) ◽  
pp. 718-730 ◽  
Author(s):  
Barzah Muazzam ◽  
Kashif Munawar ◽  
Imtiaz Ahmad Khan ◽  
Sarwat Jahan ◽  
Mazhar Iqbal ◽  
...  

Abstract Fish and other aquatic biota are hampered by mixtures of pesticides which pollute natural water through agricultural runoff and other sources. Toxicity of combined exposures of endosulfan and imidacloprid on zebrafish in terms of oxidative stress and deoxyribonucleic acid (DNA) damage in liver and histological alterations in gills and muscles was investigated. Zebrafish were exposed to three different sub-lethal concentrations of endosulfan and imidacloprid along with control selected for each treatment for 21 days: control treatment (CT), treatment 1 (T1), treatment 2 (T2) and treatment 3 (T3). T1, T2 and T3 groups were exposed to 0.1, 0.5 and 1 μg/L of endosulfan, respectively, while imidacloprid concentration was maintained at 1 ppm in all three treatments. Oxidative stress was evaluated by measuring levels of catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA). Comet assay was applied to measure degree of DNA damage. Dose- and time-dependent decrease in SOD and CAT activity was observed after 21 days of exposure while low concentrations of pesticides induced SOD and CAT activities after early exposure to reduce the oxidative stress. MDA content was found to be increased in T3 having high concentrations of pesticides. Substantial increase in DNA damage was noticed after 21 days' exposure to pesticides. Significant morphological changes were observed in gills relative to muscles.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 576
Author(s):  
Yibo Zhang ◽  
Da He ◽  
Fang Chang ◽  
Chenyuan Dang ◽  
Jie Fu

This study investigated the environmental effects of two familiar emerging contaminants, sulfamethoxazole (SMX) and erythromycin (ERY), and their mixture (10:1 w/w) using a green microalga, R. subcapitata. The cell density, pigment content, and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST) were analyzed. The calculated EC50 values of SMX, ERY, and their mixture after 96 h were 0.49, 0.044, and 0.06 mg/L, respectively. High concentrations of antibiotics lead to a decrease in chlorophyll a and total carotenoid content, affecting the ability to photosynthesize ROS scavenging capacity. This may be a factor leading to the inhibition of algal growth. When R. subcapitata was exposed to SMX and the mixture, SOD and CAT increased to resist oxidative damage, while the activities of GSH and GST decreased, suggesting that this algae’s antioxidant system was unbalanced due to oxidative stress. R. subcapitata reduced the ERY-induced ROS by increasing the activities of SOD, GSH, and GST. The difference in the contents of nonenzymatic antioxidants and enzyme antioxidants in R. subcapitata indicated the antioxidant mechanisms to SMX and ERY were not identical. This study provides insights into the oxidative stress process in R. subcapitata under different antibiotics.


1999 ◽  
Vol 40 (1) ◽  
pp. 357-364 ◽  
Author(s):  
A. Kungolos ◽  
P. Samaras ◽  
A. M. Kipopoulou ◽  
A. Zoumboulis ◽  
G. P. Sakellaropoulos

The effects of three common agrochemicals, lindane, methyl parathion and atrazine, on crustacean Daphnia magna, alga Selenastrum capricornutum and marine bacterium Vibrio fischeri were investigated in this study. Methyl parathion was the most toxic compound towards all three organisms, while lindane was more toxic to Daphnia magna and Vibrio fischeri than atrazine, and atrazine was more toxic to Selenastrum capricornutum than lindane. Among the three aquatic organisms, Selenastrum capricornutum was most sensitive in detecting lindane and atrazine toxicity, while Daphnia magna was most sensitive in detecting methyl parathion toxicity. The interactive effects of the pesticides were also investigated. The interactive effect between lindane and methyl parathion on survival of Daphnia magna was synergistic, while the ones between lindane and atrazine and between methyl parathion and atrazine were generally additive. The interactive effect of the three pesticides applied together on Daphnia magna was synergistic. The interactive effect of the three pesticides on the growth of Selenastrum capricornutum was antagonistic with few cases of addition, while the effect of all the three pairs of pesticides on algal growth was also antagonistic. The interactive effect of lindane and methyl parathion on Vibrio fischeri was additive.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1768
Author(s):  
Miroslav Rievaj ◽  
Eva Culková ◽  
Damiána Šandorová ◽  
Zuzana Lukáčová-Chomisteková ◽  
Renata Bellová ◽  
...  

This short review deals with the properties and significance of the determination of selenium, which is in trace amounts an essential element for animals and humans, but toxic at high concentrations. It may cause oxidative stress in cells, which leads to the chronic disease called selenosis. Several analytical techniques have been developed for its detection, but electroanalytical methods are advantageous due to simple sample preparation, speed of analysis and high sensitivity of measurements, especially in the case of stripping voltammetry very low detection limits even in picomoles per liter can be reached. A variety of working electrodes based on mercury, carbon, silver, platinum and gold materials were applied to the analysis of selenium in various samples. Only selenium in oxidation state + IV is electroactive therefore the most of voltammetric determinations are devoted to it. However, it is possible to detect also other forms of selenium by indirect electrochemistry approach.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-15
Author(s):  
John T. Hancock

Control of cellular function is extremely complex, being reliant on a wide range of components. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen peroxide (H2O2) and the hydroxyl radical (∙OH), each with their own reactivity and effect. Nitrogen-based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given.


2020 ◽  
Vol 47 (9) ◽  
pp. 825 ◽  
Author(s):  
Maryam Rezayian ◽  
Vahid Niknam ◽  
Hassan Ebrahimzadeh

The aim of this research was to gauge the alternations in the lipid peroxidation and antioxidative enzyme activity in two cultivars (cv. RGS003 and cv. Sarigol) of canola under drought stress and drought tolerance amelioration by penconazole (PEN) and calcium (Ca). Plants were treated with different polyethylene glycol (PEG) concentrations (0, 5, 10 and 15%) without or with PEN (15 mg L–1) and Ca (15 mM). The Ca treatment prevented the negative effects of drought on fresh weight (FW) in RGS003 and Sarigol at 5 and 15% PEG respectively. Ca and PEN/Ca treatments caused significant induction in the proline content in Sarigol at 15% PEG; the latter treatment was accompanied by higher glycine betaine (GB), lower malondialdehyde (MDA) and growth recovery. Hydrogen peroxide (HO2) content in Sarigol was proportional to the severity of drought stress and all PEN, Ca and PEN/Ca treatments significantly reduced the H2O2 content. PEN and PEN/Ca caused alleviation of the drought-induced oxidative stress in RGS003. RGS003 cultivar exhibited significantly higher antioxidative enzymes activity at most levels of drought, which could lead to its drought tolerance and lower MDA content. In contrast to that of Sarigol, the activity of catalase and superoxide dismutase (SOD) increased with Ca and PEN/Ca treatments in RGS003 under low stress. The application of PEN and Ca induced significantly P5CS and SOD expression in RGS003 under drought stress after 24 h. Overall, these data demonstrated that PEN and Ca have the ability to enhance the tolerance against the drought stress in canola plants.


1971 ◽  
Vol 24 (4) ◽  
pp. 1115 ◽  
Author(s):  
RC Jennings

CCC and Amo.1618, at relatively high concentrations only, inhibited the growth of excised branch apices of the red alga Hypnea musciformis. Neither GA3 nor GA7 stimulated growth of the alga in the presence or absence of these compounds, and gibberellin-like material extracted from H. musciformis also failed to stimulate growth. However, both gibberellins stimulated the growth of slow-growing, but not fast-growing, branch apices of the related red alga Gracilaria verucosa. It is concluded that endogenous gibberellins may not regulate the growth of H. musciformis, but this is likely to be a peculiarity of this species and not a general phenomenon in red algae.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
W. H. Fan ◽  
M. M. Cui ◽  
Z. W. Shi ◽  
C. Tan ◽  
X. P. Yang

This study examines the potential hazard of an individual nanomaterial on the Cu biotoxicity to aquatic organisms.Daphnia magnain the absence or presence of nano-TiO2was exposed to Cu. Maintaining nano-TiO2at a safe concentration cannot eliminate its potential hazard. The biomarkers superoxide dismutase, catalase, and Na+/K+-ATPase inD. magnawere measured. Cu in the presence of nano-TiO2induced higher levels of oxidative stress and physiological damage because of the sorption of Cu. Nano-TiO2also caused Na+/K+-ATPase inhibition possibly by impeding the Na+/K+transfer channel. The correlations among the biomarkers, mortality, and accumulation further showed that the overloading reactive oxygen species generation caused by nano-TiO2contributed to deeper oxidative stress and physiological regulation, thereby causing greater toxic injury.


2017 ◽  
Vol 45 (08) ◽  
pp. 1613-1629 ◽  
Author(s):  
Yan-Jiao Xu ◽  
Zao-Qin Yu ◽  
Cheng-Liang Zhang ◽  
Xi-Ping Li ◽  
Cheng-Yang Feng ◽  
...  

The present study was designed to assess the effects and potential mechanisms of ginsenosides on 17[Formula: see text]-ethynyelstradiol (EE)-induced intrahepatic cholestasis (IC). Ginsenoside at doses of 30, 100, 300[Formula: see text]mg/kg body weight was intragastrically (i.g.) given to rats for 5 days to examine the effect on EE-induced IC. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bile acid (TBA) were measured. Hepatic malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined. Protein expression of proinflammatory cytokines TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] was analyzed by immunohistochemistry and Western blot. Results indicated that ginsenosides remarkably prevented EE-induced increase in the serum levels of AST, ALT, ALP and TBA. Moreover, the elevation of hepatic MDA content induced by EE was significantly reduced, while hepatic SOD activities were significantly increased when treated with ginsenosides. Histopathology of the liver tissue showed that pathological injuries were relieved after treatment with ginsenosides. In addition, treatment with ginsenosides could significantly downregulate the protein expression of TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] compared with EE group. These findings indicate that ginsenosides exert the hepatoprotective effect on EE-induced intrahepatic cholestasis in rats, and this protection might be attributed to the attenuation of oxidative stress and inflammation.


1998 ◽  
Vol 275 (1) ◽  
pp. C323-C326 ◽  
Author(s):  
Paul Linsdell ◽  
John W. Hanrahan

The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl− and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR.


Sign in / Sign up

Export Citation Format

Share Document