scholarly journals Hydrogenated Amorphous TiO2−x and Its High Visible Light Photoactivity

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2801
Author(s):  
Guang Feng ◽  
Mengyun Hu ◽  
Shuai Yuan ◽  
Junyi Nan ◽  
Heping Zeng

Hydrogenated crystalline TiO2 with oxygen vacancy (OV) defect has been broadly investigated in recent years. Different from crystalline TiO2, hydrogenated amorphous TiO2−x for advanced photocatalytic applications is scarcely reported. In this work, we prepared hydrogenated amorphous TiO2−x (HA-TiO2−x) using a unique liquid plasma hydrogenation strategy, and demonstrated its highly visible-light photoactivity. Density functional theory combined with comprehensive analyses was to gain fundamental understanding of the correlation among the OV concentration, electronic band structure, photon capturing, reactive oxygen species (ROS) generation, and photocatalytic activity. One important finding was that the narrower the bandgap HA-TiO2−x possessed, the higher photocatalytic efficiency it exhibited. Given the narrow bandgap and extraordinary visible-light absorption, HA-TiO2−x showed excellent visible-light photodegradation in rhodamine B (98.7%), methylene blue (99.85%), and theophylline (99.87) within two hours, as well as long-term stability. The total organic carbon (TOC) removal rates of rhodamine B, methylene blue, and theophylline were measured to 55%, 61.8%, and 50.7%, respectively, which indicated that HA-TiO2−x exhibited high wastewater purification performance. This study provided a direct and effective hydrogenation method to produce reduced amorphous TiO2−x which has great potential in practical environmental remediation.

2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


2021 ◽  
Vol 4 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Ana Rovisco ◽  
Rita Branquinho ◽  
Jonas Deuermeier ◽  
Tomás Freire ◽  
Elvira Fortunato ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1849
Author(s):  
Ziqian Yin ◽  
Meijuan Li ◽  
Jianwen Zhang ◽  
Qiang Shen

We use density functional theory (DFT) to study the molecular structure and electronic band structure of Sr2Si5N8:Eu2+ doped with trivalent lanthanides (Ln3+ = Ce3+, Tb3+, Pr3+). Li+ was used as a charge compensator for the charge imbalance caused by the partial replacement of Sr2+ by Ln3+. The doping of Ln lanthanide atom causes the structure of Sr2Si5N8 lattice to shrink due to the smaller atomic radius of Ln3+ and Li+ compared to Sr2+. The doped structure’s formation energy indicates that the formation energy of Li+, which is used to compensate for the charge imbalance, is the lowest when the Sr2 site is doped. Thus, a suitable Li+ doping site for double-doped lanthanide ions can be provided. In Sr2Si5N8:Eu2+, the doped Ce3+ can occupy partly the site of Sr12+ ([SrN8]), while Eu2+ accounts for Sr12+ and Sr22+ ([SrN10]). When the Pr3+ ion is selected as the dopant in Sr2Si5N8:Eu2+, Pr3+ and Eu2+ would replace Sr22+ simultaneously. In this theoretical model, the replacement of Sr2+ by Tb3+ cannot exist reasonably. For the electronic structure, the energy level of Sr2Si5N8:Eu2+/Li+ doped with Ce3+ and Pr3+ appears at the bottom of the conduction band or in the forbidden band, which reduces the energy bandgap of Sr2Si5N8. We use DFT+U to adjust the lanthanide ion 4f energy level. The adjusted 4f-CBM of CeSr1LiSr1-Sr2Si5N8 is from 2.42 to 2.85 eV. The energy range of 4f-CBM in PrSr1LiSr1-Sr2Si5N8 is 2.75–2.99 eV and its peak is 2.90 eV; the addition of Ce3+ in EuSr1CeSr1LiSr1 made the 4f energy level of Eu2+ blue shift. The addition of Pr3+ in EuSr2PrSr2LiSr1 makes part of the Eu2+ 4f energy level blue shift. Eu2+ 4f energy level in EuSr2CeSr1LiSr1 is not in the forbidden band, so Eu2+ is not used as the emission center.


Author(s):  
Jyoti Sagar ◽  
Reetu Singh ◽  
Vijay Kumar ◽  
Sanjay Kumar ◽  
Manish P. Singh ◽  
...  

Abstract Gold-rich rare earth intermetallic compounds (viz. Ce2Au2Cd and CeAu4Cd2) show unusual magnetic and physical properties, and they have extensive applications in electronic and mechanical industries due to their good electronic and thermal behavior with high mechanical strength. In the present research article, to take full advantage of technological importance of these materials, we have investigated the structural, electronic and thermodynamic properties of Ce2Au2Cd and CeAu4Cd2 ternary intermetallic compounds using density functional theory (DFT). The electronic band structure and density of state calculations show that Ce-f orbital electrons provide metallic character to both the compounds with strong hybridization of Au-p and Cd-p orbitals at the Fermi level. The effect of temperature has been studied on the various thermodynamic parameters using the quasi-harmonic Debye model. Thermodynamic properties show that CeAu4Cd2 compound has larger mechanical resistance (or high mechanical strength or hardness) and smaller randomness compared to Ce2Au2Cd with respect to temperature.


2009 ◽  
Vol 23 (10) ◽  
pp. 2405-2412
Author(s):  
HARUN AKKUS ◽  
BAHATTIN ERDINC

The electronic band structure and optical properties of the ferroelectric single crystal KIO 3 have been investigated using the density functional methods. The calculated band structure for KIO 3 evidences that the crystal has a direct band gap with a value of 2.83 eV. The structural optimization has been performed. The real and imaginary parts of dielectric function, energy-loss function for volume and surface, and refractive index are calculated along the crystallographic axes.


2019 ◽  
Author(s):  
Helena M Ferreira ◽  
Elsa B Lopes ◽  
José F Malta ◽  
Luís M Ferreira ◽  
Maria H Casimiro ◽  
...  

Vaesite, a nickel chalcogenide with NiS2 formula, has been synthetized and studied by theoretical and experimental methods. NiS2 was prepared by solid-state reaction under vacuum and densified by hot-pressing, at different consolidation conditions. Dense single-phase pellets (relative densities >94%) were obtained, without significant lattice distortions for different hot-pressing conditions. The thermal stability of NiS2 was studied by thermogravimetric analysis. Both as-synthetized and hot-pressed NiS2 have a single phase nature, although some hot-pressed samples had traces of the sulfur deficient phase, Ni1-xS (<1%vol), due to the strong desulfurization at T > 340ºC. The electronic band structure and density of states were calculated by Density Functional Theory (DFT), indicating a metallic behavior. However, the electronic transport measurements showed p-type semiconductivity for bulk NiS2, verifying its characteristic behavior has a Mott insulator. The consolidation conditions strongly influence the electronic properties, with the best room-temperature Seebeck coefficient, electrical resistivity and power factor being 182µVK-1, 2257μΩm and 14.1µWK-2m-1, respectively, pointing this compound as a good starting point for a new family of thermoelectric materials.


2021 ◽  
Author(s):  
O. T. Uto ◽  
J. O. Akinlami ◽  
S. Kenmoe ◽  
G. A. Adebayo

Abstract The CoYSb (Y = Cr, Mo and W) compounds which are XYZ type half-Heusler alloys and also exist in the face centred cubic MgAgAs-type struc-ture conform to F ̄43m space group. In the present work, these compoundsare investigated in different atomic arrangements called, Type-I, Type-II andType-III phases, using Generalized Gradient Approximation (GGA) in the Density Functional Theory (DFT) implemented in QE (Quantum EspressoAb-Initio Simulation Package). The ferromagnetic state of these alloys is studied after investigating their stable structural phase. The calculated electronic band structure and the total electronic density of states indicated nearly half-metallic behaviour in CoMoSb with a possibility of being used in spintronic application, metallic in CoWSb and half-metallic in CoCrSb, with the minority spin band gap of 0.81 eV. Furthermore, the calculated mechanical properties predicted an anisotropic behaviour of these alloys in the stable phase. Finally, due to its high Debye temperature value, CoCrSb possesses a stronger covalent bond than CoMoSb and CoWSb, respectively.


Author(s):  
I. S. Okunzuwa ◽  
E. Aigbekaen Eddy

We calculated the structural, electronic, mechanical and thermal properties of Fe3Al semiconducting using Quantum ESPRESSO, an open source first principles code based on density-functional theory, plane waves, and pseudopotentials. Structural parameter results (equilibrium lattice parameters, bulk modulus and its derivative pressure) have been reported. The underestimated band gap is obtained along with higher state density and energy bands around the fermi level. Mechanical properties of the rock-salt structure of Fe3Al, such as, shear modulus (G), Young’s modulus (E), and Poisson’s ratio () were investigated. The thermodynamic parameters are also present. The results are in good agreement with the available experimental and other theoretical results.


Sign in / Sign up

Export Citation Format

Share Document