scholarly journals Nonporous, Strong, Stretchable, and Transparent Electrospun Aromatic Polyurea Nanocomposites as Potential Anticorrosion Coating Films

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2998
Author(s):  
Sheik Ambarine Banon Auckloo ◽  
Khanisya Palaniandy ◽  
Yew Mun Hung ◽  
Giuseppe Lazzara ◽  
Siang-Piao Chai ◽  
...  

This study, for the first time, focused on the fabrication of nonporous polyurea thin films (~200 microns) using the electrospinning method as a novel approach for coating applications. Multi-walled carbon nanotubes (MWCNTs) and hydrophilic-fumed nanosilica (HFNS) were added separately into electrospun polyurea films as nano-reinforcing fillers for the enhancement of properties. Neat polyurea films demonstrated a tensile strength of 14 MPa with an elongation of 360%. At a loading of 0.2% of MWCNTs, the highest tensile strength of 21 MPa and elongation of 402% were obtained, while the water contact angle remained almost unchanged (89°). Surface morphology analysis indicated that the production of polyurea fibers during electrospinning bonded together upon curing, leading to a nonporous film. Neat polyurea exhibited high thermal resistance with a degradation temperature of 380 °C. Upon reinforcement with 0.2% of MWCNTs and 0.4% of HFNS, it increased by ~7 °C. The storage modulus increased by 42 MPa with the addition of 0.2% of MWCNTs, implying a superior viscoelasticity of polyurea nanocomposite films. The results were benchmarked with anti-corrosive polymer coatings from the literature, revealing that the production of nonporous polyurea coatings with robust strength, elasticity, and thermal properties was achieved. Electrospun polyurea coatings are promising candidates as flexible anti-corrosive coatings for heat exchanges and electrical wires.

Author(s):  
R. B. Jagadeesh Chandra ◽  
B. Shivamurthy ◽  
M. Sathish Kumar ◽  
B. H. S. Thimmappa

AbstractThe multi-walled carbon nanotubes (MWCNTs) and the poly(acrylonitrile-co-butadiene-co-styrene) (ABS) granulates are dispersed in acetone separately using a magnetic stirrer followed by ultrasonication. Further, both the solutions were mixed with magnetic stirring followed by ultrasonication. Neat-ABS film, 0.25 wt%, 0.5 wt% and 1 wt% of MWCNT-ABS nanocomposite films of the average thickness of 140 µm are fabricated by the solution molding using a petri dish, followed by room temperature curing and further hot compression to maintain uniform thickness. The tensile properties, thermal stability, electrical conductivity, and EMSE of all films are investigated. The results indicate that the addition of MWCNTs to ABS enhanced the mechanical properties and electrical conductivity, thermal stability, and EMSE. The 0.25 wt% MWCNT-ABS nanocomposite films show attractive mechanical, electrical, thermal, and EMSE as compared to neat-ABS films. More than 0.25 wt% MWCNTs in the ABS matrix deteriorates the tensile strength. However, 0.5 wt% MWCNT-ABS nanocomposites exhibit better tensile strength, Young’s modulus, electrical conductivity, and EMSE than neat-ABS. In this research, we used a low quantity of MWCNTs and followed a one-time heating process in the entire fabrication, and produced MWCNT-ABS nanocomposite films with reasonable properties. Hence, this may be one of the options to produce nanocomposites suitable for EMS materials. We recommend that these films may be used as interlayers to develop an X-band range electromagnetic wave shielding material.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fahad Saleem Ahmed Khan ◽  
N. M. Mubarak ◽  
Mohammad Khalid ◽  
Rashmi Walvekar ◽  
E. C. Abdullah ◽  
...  

AbstractModified multi-walled carbon nanotubes (f-MWCNTs) and hydroxyapatite nanorods (n-HA) were reinforced into polypropylene (PP) with the support of a melt compounding approach. Varying composition of f-MWCNTs (0.1–0.3 wt.%) and nHA (15–20 wt.%) were reinforced into PP, to obtain biocomposites of different compositions. The morphology, thermal and mechanical characteristics of PP/n-HA/f-MWCNTs were observed. Tensile studies reflected that the addition of f-MWCNTs is advantageous in improving the tensile strength of PP/n-HA nanocomposites but decreases its Young’s modulus significantly. Based on the thermal study, the f-MWCNTs and n-HA were known to be adequate to enhance PP’s thermal and dimensional stability. Furthermore, MTT studies proved that PP/n-HA/f-MWCNTs are biocompatible. Consequently, f-MWCNTs and n-HA reinforced into PP may be a promising nanocomposite in orthopedics industry applications such as the human subchondral bone i.e. patella and cartilage and fabricating certain light-loaded implants.


2018 ◽  
Vol 915 ◽  
pp. 104-109
Author(s):  
Barış Demirbay ◽  
Şaziye Uğur

Electrical characteristics and morphology of nanocomposite films composed of two different polystyrene (PS) latexes impregnated with multi-walled carbon nanotubes (MWCNT) in the range between 0 wt% and 20 wt% were assessed by considering photon transmission (UV-Vis) technique and electrical conductivity measurements. Emulsion polymerization technique was employed both to synthesize very fine PS particles dispersed in water and to tailor the sizes of the PS particles as 382 nm and 560 nm, respectively. PS/MWCNT nanocomposite films were obtained from the liquid form on glass substrates via drop-casting method and all they dried at 40 QUOTE C. Each dried sample was then annealed at varying temperatures between 100 QUOTE C and 250 QUOTE C for 10 min. The surface conductivity QUOTE of each annealed film at 250 QUOTE C was measured and was found to increase dramatically above a certain mass fraction of MWCNT content, QUOTE . Each set of PS/MWCNT nanocomposite film had a similar electrical percolation threshold of QUOTE =1.5 wt% as the MWCNT content and critical exponents of QUOTE were found to be 2.64 and 1.19 for 382 nm and 560 nm PS latex systems, respectively.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2008 ◽  
Vol 41-42 ◽  
pp. 27-32 ◽  
Author(s):  
Chun Sheng Lu

Two available strength data sets of single-walled and multi-walled carbon nanotubes are analysed, and the effects of sample sizes on their tensile strengths are investigated. A minimum information criterion is applied to determine the optimal strength distribution. The results show that, in contrast to a two-parameter Weibull distribution, lognormal distribution seems to be a more suitable choice. A simple extrapolation of classical Weibull statistics to nanoscales may result in overestimation on the tensile strength of carbon nanotubes.


2016 ◽  
Vol 721 ◽  
pp. 13-17
Author(s):  
Juris Bitenieks ◽  
Remo Merijs Meri ◽  
Janis Zicans ◽  
Mārtiņš Kalniņš

Nanocomposite films from polyvinyl acetate (PVAc) dispersion and multi walled carbon nanotubes (MWCNTs) were prepared by solution casting technique. Stress-strain properties showed increase in elastic modulus and yield strength. Mechanical properties characterized by dynamic mechanical thermal analysis represented increase in storage modulus below glass transition temperature. Studied dielectrical properties of PVAc/MWCNT nanocomposites revealed formation of conductive MWCNT network in PVAc matrix.


Sign in / Sign up

Export Citation Format

Share Document