scholarly journals Extra-Low Dosage Graphene Oxide Cementitious Nanocomposites: A Nano- to Macroscale Approach

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3278
Author(s):  
Mehdi Chougan ◽  
Francesca Romana Lamastra ◽  
Eleonora Bolli ◽  
Daniela Caschera ◽  
Saulius Kaciulis ◽  
...  

The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 837 ◽  
Author(s):  
Weihang Li ◽  
Bojun Song ◽  
Shirui Zhang ◽  
Fan Zhang ◽  
Chang Liu ◽  
...  

In this paper, the graphene oxide loaded with nano titanium dioxide (TiO2–GO) was synthesized through 3-isocyanatopropyltrimethoxysilane (IPTMS) and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and dispersion test. The results illustrated our modification was successful and TiO2–GO was transferred from hydrophilic to hydrophobic. That greatly enhanced the dispersity of TiO2–GO in epoxy through the observation of the coating morphology test. Moreover, the impact of TiO2–GO on anti-corrosion property in epoxy was investigated by Electrochemical Impedance Spectroscopy (EIS). Comparing to pristine particles including GO and TiO2, TiO2–GO could more significantly improve the resistance of corrosion with the help of IPTMS. Furthermore, the anti-corrosion mechanism of TiO2–GO in epoxy was tentatively proposed and discussed.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


2011 ◽  
Vol 287-290 ◽  
pp. 539-543 ◽  
Author(s):  
Wen Shi Ma ◽  
Jun Wen Zhou ◽  
Xiao Dan Lin

Graphene oxide was prepared through Hummers' method,then different reduced graphenes were prepared via reduction of graphene oxide with hydrazine hydrate for 1h、12h and 24h. X-ray photoelectron spectroscopy (XPS) was used for the characterization of graphene oxide and the reduced graphenes. The variation of the contents of carbon in carbon and oxygen functional groups and chemical compositions of graphene oxides were investigated through analysis the content of different carbon atoms in different reduced graphenes. The results showed that the reduction reaction was very fast in the first 1 h, the content of total oxygen bonded carbon atoms decreased from 83.6% to 22.1%, and then after the reduction rate became very slow. After 12h, the content of total oxygen bonded carbon atom is 19.56%, only 2.54% lower than that of 1h’s. At the same time, C-N was introduced in the graphene oxides; this increased the stereo-hindrance for hydrazine hydrate attacking the C-Oxygen groups, thus reduced the reduction rate. After reduction for 24h, there still exists 16.4% oxygen bonded carbon atoms and the total conversion ratio of graphene approaches 70%.


Author(s):  
Ke Qu ◽  
Yuqi Bai ◽  
Miao Deng

Abstract The ever-increasing need for small and lightweight power sources for use in portable or wearable electronic devices has spurred the development of supercapacitors as a promising energy storage and conversion system. In this work, a simple, facile and easy-to-practice method has been developed to employ carbon paper (CP) as the support to coat molybdenum disulfide (MoS2) and graphene oxide (GO), followed by electrodeposition of polyaniline (PANI) to render CP/MoS2-GO-PANI. The preparation parameters, such as amounts of MoS2, GO and number of aniline electropolymerization cycles, have been optimized to render CP/MoS2-GO-PANI the best capacitive performance. The as-prepared optimal CP/MoS2-GO-PANI is characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The supercapacitive properties of CP/MoS2-GO-PANI as an electrode have been evaluated electrochemically via cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy testing. CP/MoS2-GO-PANI delivers a specific capacitance of 255.1 F/g at 1.0 A/g and exhibits excellent rate capability under larger current densities. Moreover, a symmetrical supercapacitor is assembled and three are connected in series to power a light-emitting diode for ~15 minutes, demonstrating the promising application potential of CP/MoS2-GO-PANI-based supercapacitor.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hong Ju ◽  
Jinzhuo Duan ◽  
Haitong Lu ◽  
Weihui Xu

As a new type of membrane material, graphene oxide (GO) can easily form sub-nanometer interlayer channels, which can effectively screen salt ions. The composite membrane and structure with a high water flux and good ion rejection rate were compared by the cross-linking of GO with three different diamine monomers: ethylenediamine (EDA), urea (UR), and p-phenylenediamine (PPD). X-ray photoelectron spectroscopy (XPS) results showed that unmodified GO mainly comprises π-π interactions and hydrogen bonds, but after crosslinking with diamine, both GO and mixed cellulose (MCE) membranes are chemically bonded to the diamine. The GO-UR/MCE membrane achieved a water flux similar to the original GO membrane, while the water flux of GO-PPD/MCE and GO-EDA/MCE dropped. X-ray diffraction results demonstrated that the covalent bond between GO and diamine can effectively inhibit the extension of d-spacing during the transition between dry and wet states. The separation performance of the GO-UR/MCE membrane was the best. GO-PPD/MCE had the largest contact angle and the worst hydrophilicity, but its water flux was still greater than GO-EDA/MCE. This result indicated that the introduction of different functional groups during the diamine monomer cross-linking of GO caused some changes in the performance structure of the membrane.


2018 ◽  
Vol 18 (12) ◽  
pp. 8252-8257 ◽  
Author(s):  
Huixuan Zhang ◽  
Xinyi Zhang ◽  
Ruonan Guo ◽  
Qingfeng Cheng ◽  
Xiuwen Cheng

In this study, nanoscale zero-valent iron decorated graphene oxide (NZVI/GO) composite was fabricated through a reduction process in the presence of sodium borohydride (NaBH4) solution. Subsequently, physicochemical properties of the NZVI/GO composites were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR) and Raman spectra. Results indicated that Fe species existed in the form of Fe0, which uniformly dispersed on the surface of GO. Furthermore, the performance of NZVI/GO was evaluated by the degradation of tichloroacetic acid (TCAA). TCAA can be rapidly degraded by NZVI/GO. This paper provides a promising strategy to synthesize versatile catalyst which would be potentially applied in sewage treatment to degrade chlorinated organic compounds.


2020 ◽  
Vol 20 (7) ◽  
pp. 4035-4046
Author(s):  
Rengasamy Dhanabal ◽  
Dhanasekaran Naveena ◽  
Sivan Velmathi ◽  
Arumugam Chandra Bose

Using a simple solution based synthesis route, hexagonal MoO3 (h-MoO3) nanorods on reduced graphene oxide (RGO) sheets were prepared. The structure and morphology of resulting RGO-MoO3 nanocomposite were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The optical property was studied using UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). The RGO-MoO3 nanocomposites were used as an electrode for supercapacitor application and photocatalyst for photodegradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation. We demonstrated that the RGO-MoO3 electrode is capable of delivering high specific capacitance of 134 F/g at current density of 1 A/g with outstanding cyclic stability for 2000 cycles. The RGOMoO3 photocatalyst degrades 95% of MB dye within 90 min, and a considerable recyclability up to 4 cycles was observed. The quenching effect of scavengers test confirms holes are main reactive species in the photocatalytic degradation of MB. Further, the charge transfer process between RGO and MoO3 was schematically demonstrated.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 730 ◽  
Author(s):  
Yuyu Ren ◽  
Lili Zhao ◽  
Yang Zou ◽  
Lixin Song ◽  
Ningning Dong ◽  
...  

TiO2/reduced graphene oxide (rGO) nanocomposites with two different TiO2 particle sizes were synthesized by a facile hydrothermal method using two different source materials of Ti: tetrabutyl titanate (TBT) and commercial TiO2 powder (P25). For respective series with the same source materials, we investigated additions that optimized the nonlinear optical properties (NLO) and optical limiting (OL) performances, and we explored the relationships between structural diversity and performance. Several characterization techniques, including X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy (UV-Vis) were conducted to confirm the microstructures and chemical states of as-prepared materials. This indicated the existence of the Ti–O–C bond between rGO sheets and TiO2 particles and the reduction from precursor graphene oxide (GO) to rGO. The results of UV-Vis spectra revealed that the TiO2/rGO nanocomposites showed smaller band gaps than bare TiO2. A nanosecond open-aperture Z-scan technique at 1064 nm was applied to investigate NLO and OL properties. TiO2/rGO nanocomposites exhibited enhanced NLO and OL performances, arising from synergistic effects, compared to individual components. The TBT series samples performed better than the P25 series, presumably relevant to dimensional effects.


Sign in / Sign up

Export Citation Format

Share Document