scholarly journals Two-Channel VO2 Memory Meta-Device for Terahertz Waves

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3409
Author(s):  
Xueguang Lu ◽  
Bowen Dong ◽  
Hongfu Zhu ◽  
Qiwu Shi ◽  
Lu Tang ◽  
...  

Vanadium oxide (VO2), as one of the classical strongly correlated oxides with a reversible and sharp insulator-metal transition (IMT), enables many applications in dynamic terahertz (THz) wave control. Recently, due to the inherent phase transition hysteresis feature, VO2 has shown favorable application prospects in memory-related devices once combined with metamaterials or metasurfaces. However, to date, VO2-based memory meta-devices are usually in a single-channel read/write mode, which limits their storage capacity and speed. In this paper, we propose a reconfigurable meta-memory based on VO2, which favors a two-channel read/write mode. Our design consists of a pair of large and small split-ring resonators, and the corresponding VO2 patterns are embedded in the gap locations. By controlling the external power supply, the two operation bands can be controlled independently to achieve at least four amplitude states, including “00”, “01”, “10”, and “11”, which results in a two-channel storage function. In addition, our research may provide prospective applications in fields such as THz switching, photon storage, and THz communication systems in the future.

2020 ◽  
Vol 34 (21) ◽  
pp. 2050211
Author(s):  
Pengcheng Lou ◽  
Chao Tang ◽  
Qingshan Niu ◽  
Yuanhao He ◽  
Ben-Xin Wang

Multiple-band terahertz filter device consisting of two different-sized metallic split rings with the nested design method is proposed and investigated in this paper. Five separated filtering resonant dips having different resonance amplitudes and quality factors are gained, which are mainly attributed to the hybrid coupling effect between the two nested split-ring resonators. More importantly, the resonance features of the five filtering dips show a significant dependence on the designed parameters, especially the gap between two nested split rings. The multiple-band filtering resonance device given here can open up new avenues to control terahertz waves in many technology-related fields.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Yan ◽  
Di Jiang ◽  
Ruimin Xu ◽  
Yuehang Xu

A novel ultrawideband (UWB) antenna which has a triple-band notch function is presented. The proposed antenna can block interfering signals from C-band satellite communication systems, IEEE802.11a, and HIPERLAN/2 WLAN systems for example. The antenna is excited by using novel common direction rectangular complementary split-ring resonators (CSRR) fabricated on radiating patch of the dielectric substrate with coplanar waveguide (CPW) feed strip line. The voltage standing wave ratio (VSWR) of the proposed antenna is less than 2.0 in the frequency band from 2.8 to 12 GHz, while showing a very sharp band-rejection performance at 3.9 GHz, 5.2 GHz, and 5.9 GHz. The measurement results show that the proposed antenna provides good omnidirectional field pattern over its whole frequency band excluding the rejected band, which is suitable for UWB applications.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4912
Author(s):  
Shuhang Bie ◽  
Shi Pu

To meet the increasing need of high-data-rate and broadband wireless communication systems, the devices and its circuits R&D under Millimeter, Sub-Millimeter, or even Terahertz (THz) frequency bands are attracting more and more attention from not only academic, but also industrial areas. Most of the former research on the THz waveband (0.1–10 THz) antenna design is mainly focused on realizing high directional gain, such as horn antennas, even though the coverage area is very limited when comparing with the current Wi-Fi system. One solution for the horizontally omnidirectional communication antenna is using the structure of multiple split-ring resonators (MSRRs). Aiming at this point, a novel 300 GHz microstrip antenna array based on the dual-surfaced multiple split-ring resonators (DSMSRRs) is proposed in this paper. By employing the two parallel microstrip transmission lines, different MSRRs are fed and connected on two surfaces of the PCB with a centrally symmetric way about them. The feeding port of the whole antenna is in between the centers of the two microstrip lines. Thus, this kind of structure is a so-called DSMSRR. Based on the different size of the MSRRs, different or multiple working wavebands can be achieved on the whole antenna. Firstly, in this paper, the quasi-static model is used to analyze the factors affecting the resonance frequency of MSRRs. Simulation and measured results demonstrate that the resonant frequency of the proposed array antenna is 300 GHz, which meets the design requirements of the expected frequency point and exhibits good radiation characteristics. Then, a dual-band antenna is designed on the above methods, and it is proved by simulation that the working frequency bands of the proposed dual-band antenna with reflection coefficient below −10 dB are 274.1–295.6 GHz and 306.3–313.4 GHz.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ghulam Fatima Kakepoto ◽  
Shaoqiu Xiao ◽  
Farman Ali Mangi

Abstract A wideband circularly polarized (CP) array antenna has significant importance in modern communication system. In this paper, we proposed a wide band CP array by combing dual split ring resonators (DSRRs) to dual layer microstrip antenna. A 2 × 2 dual-layer microstrip antenna array is used to radiate wide band linearly polarized wave, and the 3 × 3 four-layer DSRRs is used as an external polarizer which converts linearly polarized wave to circularly polarized wave at distinct frequencies. The proposed array achieves an impedance bandwidth of 20% ranging from 4.57–5.57 GHz and AR bandwidth of 16.83% ranging from 4.57–5.41 GHz. The prominent futures of the proposed array are wide impedance bandwidth on desired frequencies. This new concept is theoretically and experimentally investigated to evaluate the performance of the proposed array, which allows a better prospect for the application of radar and satellite communication systems.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zhonggang Xiong ◽  
Liping Shang ◽  
Jieping Yang ◽  
Linyu Chen ◽  
Jin Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document