scholarly journals A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3432
Author(s):  
Pedro Farinha ◽  
João M. P. Coelho ◽  
Catarina Pinto Reis ◽  
Maria Manuela Gaspar

Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.

2019 ◽  
pp. 141-160
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3159 ◽  
Author(s):  
Nemi Malhotra ◽  
Jiann-Shing Lee ◽  
Rhenz Alfred D. Liman ◽  
Johnsy Margotte S. Ruallo ◽  
Oliver B. Villaflores ◽  
...  

The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles’ toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.


2012 ◽  
Vol 1 (1) ◽  
pp. 59-76 ◽  
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


2021 ◽  
Vol 18 ◽  
Author(s):  
Vinay Kant ◽  
Pooja Kumari ◽  
Dhaval Kamothi ◽  
Munish Ahuja ◽  
Vinod Kumar

: Wound healing is biological phenomenon of the body involving sequential biochemical processes that are primarily involved in restoring the cellular integrity of the organ. The market related to wound-care products has extensively been expanded and crossed over fifteen billion US dollar, along with twelve billion US dollar for treating wound scars. Different bioactive compounds have shown their various pharmacological actions including wound healing activity. Natural bioactive agents have gained much attention in wound management due to their beneficial nature of possessing least side effects. Some of the bioactive compounds which have shown pronounced wound healing potentials include curcumin, quercetin, lawsone, resveratrol, aloe vera, astragaloside, essential oils, growth factors, andrographolide, bilirubin etc. Most of the natural bioactive agents have limited applicability in clinical practices due to poor aqueous solubility, fast degradation rate and low bioavailability. These problems have been overcome in last few years by encapsulating them into nano-formulations. The nanomaterial of bioactive agents offers discrete advantages like high surface area to volume ratio and nanoscale size offering alternations in physical and chemical properties. Theses nanomaterials also have sustained controlled release delivery, which seems very effective for the lengthy process of wound healing. Many investigations by the global researchers have focused on the emergence of nanomaterials in wound healing applications. In the present review, different natural bioactive agents in the form of nano formulations have been discussed for wound healing potentials.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bui Trung Thanh ◽  
Nguyen Van Sau ◽  
Heongkyu Ju ◽  
Mohammed J. K. Bashir ◽  
Hieng Kiat Jun ◽  
...  

We presented synthesis and physical characterization of iron oxide magnetic nanoparticles (Fe3O4) for biomedical applications in the size range of 10-30 nm. Magnetic nanoparticles were synthesized by the coprecipitation method, and the particles’ size was controlled by two different injection methods of sodium hydroxide (NaOH). The synthesized magnetic nanoparticles were then modified by using series of linkers including tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES), and glutaraldehyde (GA) to generate the structure of Fe3O4/SiO2/NH2/CHO, which can be used for immobilization of protein A. Additionally, we used transmission electron microscopy (TEM), X-ray powder diffraction (XRD), vibrating-sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FTIR), for characterization of properties and structure of the nanoparticles. An immobilization of protein A on magnetic nanoparticles was studied with a UV-Vis spectrum (UV-Vis) and fluorescence electron microscopy and Bradford method. Results showed that an XRD spectrum with a peak at (311) corresponded to the standard peak of magnetic nanoparticles. In addition, the magnetic nanoparticles with d≥30 nm have higher saturation magnetizations in comparison with the smaller ones with d≤10 nm. However, the smaller magnetic nanoparticles offered higher efficiency for binding of protein A, due to the high surface/volume ratio. These particles with functional groups on their surface are promising candidates for biomedical applications, e.g., drug delivery, controlled drug release, or disease diagnosis in point-of-care test.


Author(s):  
Subbiah Latha ◽  
Palanisamy Selvamani ◽  
Suresh Babu Palanisamy ◽  
Deepak B. Thimiri Govindaraj ◽  
Prabha Thangavelu

The magnetic nanoparticles are said to be a class of nanoparticles or nanomaterials that can be manipulated by the help of externally applied magnetic field. These magnetic nanoparticles constitute materials such as nickel, cobalt, iron, and their derivatives. These are normally smaller than 1 µm in diameter possess wide range of properties and attractive characteristics suitable for biomedical such as used as hyperthermia, enhancing magnetic resonance imaging (MRI) data, supplementing tissue engineering efforts, and improving the target-based drug delivery and many other technological applications. In the field of cancer research, the role of nanoparticles and nanotechnology-based methods and novel strategies have been increasing swiftly for cancer identification and cancer therapy. The iron oxide (Fe3O4, γ-Fe2O3) nanoparticles (NPs) are widely used for the drug delivery, magnetic nanoparticle-enhanced hyperthermia, and also as MRI contrast agents due to its biocompatibility, low toxicity, etc. lead to the growth of novel biopharmaceutical technologies.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Hsuan-Ming Huang ◽  
Yi-Yu Shih

During the past decade, medical imaging has made the transition from anatomical imaging to functional and even molecular imaging. Such transition provides a great opportunity to begin the integration of imaging data and various levels of biological data. In particular, the integration of imaging data and multiomics data such as genomics, metabolomics, proteomics, and pharmacogenomics may open new avenues for predictive, preventive, and personalized medicine. However, to promote imaging-omics integration, the practical challenge of imaging techniques should be addressed. In this paper, we describe key challenges in two imaging techniques: computed tomography (CT) and magnetic resonance imaging (MRI) and then review existing technological advancements. Despite the fact that CT and MRI have different principles of image formation, both imaging techniques can provide high-resolution anatomical images while playing a more and more important role in providing molecular information. Such imaging techniques that enable single modality to image both the detailed anatomy and function of tissues and organs of the body will be beneficial in the imaging-omics field.


RSC Advances ◽  
2016 ◽  
Vol 6 (92) ◽  
pp. 89089-89097 ◽  
Author(s):  
Myung-Hee Song ◽  
D. Harikishore Kumar Reddy ◽  
Yeoung-Sang Yun

Magnetic nanoparticles (MNPs) possessing a high surface to volume ratio, copious chemically active sites, and ease of separation from aqueous solutions are emerging materials for water treatment.


Sign in / Sign up

Export Citation Format

Share Document