scholarly journals Data-Centric Architecture for Self-Driving Laboratories with Autonomous Discovery of New Nanomaterials

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Maria A. Butakova ◽  
Andrey V. Chernov ◽  
Oleg O. Kartashov ◽  
Alexander V. Soldatov

Artificial intelligence (AI) approaches continue to spread in almost every research and technology branch. However, a simple adaptation of AI methods and algorithms successfully exploited in one area to another field may face unexpected problems. Accelerating the discovery of new functional materials in chemical self-driving laboratories has an essential dependence on previous experimenters’ experience. Self-driving laboratories help automate and intellectualize processes involved in discovering nanomaterials with required parameters that are difficult to transfer to AI-driven systems straightforwardly. It is not easy to find a suitable design method for self-driving laboratory implementation. In this case, the most appropriate way to implement is by creating and customizing a specific adaptive digital-centric automated laboratory with a data fusion approach that can reproduce a real experimenter’s behavior. This paper analyzes the workflow of autonomous experimentation in the self-driving laboratory and distinguishes the core structure of such a laboratory, including sensing technologies. We propose a novel data-centric research strategy and multilevel data flow architecture for self-driving laboratories with the autonomous discovery of new functional nanomaterials.

2015 ◽  
Vol 51 (7) ◽  
pp. 1309-1312 ◽  
Author(s):  
Rui Liu ◽  
Jie-fang Sun ◽  
Dong Cao ◽  
Li-qiang Zhang ◽  
Jing-fu Liu ◽  
...  

In this report, we propose and demonstrate the fabrication of a highly-specific SERS substrate by co-precipitating of functional materials, such as nanosorbents and nanocatalysts, into Ag nanoporous films.


Author(s):  
Daphna Oyserman

Everyone can imagine their future self, even very young children, and this future self is usually positive and education-linked. To make progress toward an aspired future or away from a feared future requires people to plan and take action. Unfortunately, most people often start too late and commit minimal effort to ineffective strategies that lead their attention elsewhere. As a result, their high hopes and earnest resolutions often fall short. In Pathways to Success Through Identity-Based Motivation Daphna Oyserman focuses on situational constraints and affordances that trigger or impede taking action. Focusing on when the future-self matters and how to reduce the shortfall between the self that one aspires to become and the outcomes that one actually attains, Oyserman introduces the reader to the core theoretical framework of identity-based motivation (IBM) theory. IBM theory is the prediction that people prefer to act in identity-congruent ways but that the identity-to-behavior link is opaque for a number of reasons (the future feels far away, difficulty of working on goals is misinterpreted, and strategies for attaining goals do not feel identity-congruent). Oyserman's book goes on to also include the stakes and how the importance of education comes into play as it improves the lives of the individual, their family, and their society. The framework of IBM theory and how to achieve it is broken down into three parts: how to translate identity-based motivation into a practical intervention, an outline of the intervention, and empirical evidence that it works. In addition, the book also includes an implementation manual and fidelity measures for educators utilizing this book to intervene for the improvement of academic outcomes.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3376
Author(s):  
Marco Scarel ◽  
Silvia Marchesan

Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1152
Author(s):  
Tatyana Kirila ◽  
Anna Smirnova ◽  
Alla Razina ◽  
Andrey Tenkovtsev ◽  
Alexander Filippov

The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.


2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
George Pattison

AbstractNoting Heidegger’s critique of Kierkegaard’s way of relating time and eternity, the paper offers an alternative reading of Kierkegaard that suggests Heidegger has overlooked crucial elements in the Kierkegaardian account. Gabriel Marcel and Sharon Krishek are used to counter Heidegger’s minimizing of the deaths of others and to show how the deaths of others may become integral to our sense of self. This prepares the way for revisiting Kierkegaard’s discourse on the work of love in remembering the dead. Against the criticism that this reveals the absence of the other in Kierkegaardian love, the paper argues that, on the contrary, it shows how Kierkegaard conceives the self as inseparable from the core relationships of love that, despite of death, constitute it as the self that it is.


2018 ◽  
Vol 46 (4) ◽  
pp. 305-314 ◽  
Author(s):  
Everett L. Worthington

I examine religious humility, which is one content area of intellectual humility. Intellectual humility is the subtype of humility that involves taking a humble stance in sharing ideas, especially when one is challenged or when an idea is threatening. I position religious humility within the context of general humility, spiritual humility, and relational humility, and thus arrive at several propositions. People who are intensely spiritually humble can hold dogmatic beliefs and believe themselves to be religiously humble, yet be perceived by others of different persuasions as religiously dogmatic and even arrogant. For such people to be truly religiously humble, they must feel that the religious belief is core to their meaning system. This requires discernment of which of the person’s beliefs are truly at the core. But also the religiously humble person must fulfill the definition of general humility, accurately perceiving the strengths and limitations of the self, being teachable to correct weaknesses, presenting oneself modestly, and being positively other-oriented. Humility thus involves (1) beliefs, values, and attitudes and (2) an interpersonal presentational style. Therefore, intellectually humble people must track the positive epistemic status of their beliefs and also must present with convicted civility.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1772 ◽  
Author(s):  
Maria de los Angeles Cortes ◽  
Raquel de la Campa ◽  
Maria Luisa Valenzuela ◽  
Carlos Díaz ◽  
Gabino A. Carriedo ◽  
...  

During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by –PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).


2013 ◽  
Vol 66 (1) ◽  
pp. 9 ◽  
Author(s):  
Yi Liu ◽  
Zhan-Ting Li

The chemistry of imine bond formation from simple aldehyde and amine precursors is among the most powerful dynamic covalent chemistries employed for the construction of discrete molecular objects and extended molecular frameworks. The reversible nature of the C=N bond confers error-checking and proof-reading capabilities in the self-assembly process within a multi-component reaction system. This review highlights recent progress in the self-assembly of complex organic molecular architectures that are enabled by dynamic imine chemistry, including molecular containers with defined geometry and size, mechanically interlocked molecules, and extended frameworks and polymers, from building blocks with preprogrammed steric and electronic information. The functional aspects associated with the nanometer-scale features not only place these dynamically constructed nanostructures at the frontier of materials sciences, but also bring unprecedented opportunities for the discovery of new functional materials.


Sign in / Sign up

Export Citation Format

Share Document