scholarly journals Antibacterial Effect of Colloidal Suspensions Varying in Silver Nanoparticles and Ions Concentrations

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Varvara Platania ◽  
Alexandra Kaldeli-Kerou ◽  
Theodora Karamanidou ◽  
Maria Kouki ◽  
Alexander Tsouknidas ◽  
...  

A lot of effort has been dedicated recently to provide a better insight into the mechanism of the antibacterial activity of silver nanoparticles (AgNPs) colloidal suspensions and their released silver ionic counterparts. However, there is no consistency regarding whether the antibacterial effect displayed at cellular level originates from the AgNPs or their ionic constitutes. To address this issue, three colloidal suspensions exhibiting different ratios of AgNPs/silver ions were synthesized by a wet chemistry method in conjunction with tangential flow filtration, and were characterized and evaluated for their antimicrobial properties against two gram-negative, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two gram-positive, Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), bacterial strains. The produced samples contained 25% AgNPs and 75% Ag ions (AgNP_25), 50% AgNPs and 50% Ag ions (AgNP_50), and 100% AgNPs (AgNP_100). The sample AgNP_100 demonstrated the lowest minimum inhibitory concentration values ranging from 4.6 to 15.6 ppm for all four bacterial strains, while all three samples indicated minimum bactericidal concentration (MBC) values ranging from 16.6 ppm to 62.5 ppm against all strains. An increase in silver ions content results in higher bactericidal activity. All three samples were found to lead to a significant morphological damage by disruption of the bacterial cell membranes as analyzed by means of scanning electron microscopy (SEM). The growth kinetics demonstrated that all three samples were able to reduce the bacterial population at a concentration of 3.1 ppm. SEM and growth kinetic data underline that S. epidermidis is the most sensitive among all strains against the investigated samples. Our results showed that all three AgNPs colloidal suspensions exhibited strong antibacterial properties and, thus, they can be applied in medical devices and antimicrobial control systems.

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3838
Author(s):  
Hazem Idriss ◽  
Roman Elashnikov ◽  
Silvie Rimpelová ◽  
Barbora Vokatá ◽  
Petr Haušild ◽  
...  

The usage of three-dimensional (3D) printed materials in many bioapplications has been one of the fastest-growing sectors in the nanobiomaterial industry in the last couple of years. In this work, we present a chemical approach for grafting silver nanoparticles (AgNPs) into a resin matrix, which is convenient for 3D printing. In this way, the samples can be prepared and are able to release silver ions (Ag+) with excellent antibacterial effect against bacterial strains of E. coli and S. epidermidis. By the proposed process, the AgNPs are perfectly mixed and involved in the polymerization process and their distribution in the matrix is homogenous. It was also demonstrated that this approach does not affect the printing resolution and the resin is therefore suitable for the construction of microstructures enabling controlled silver ion release and antifouling properties. At the same time the physical properties of the material, such as viscosity and elasticity modulus are preserved. The described approach can be used for the fabrication of facile, low-cost 3D printed resin with antifouling-antibacterial properties with the possibility to control the release of Ag+ through microstructuring.


2020 ◽  
Vol 12 (4) ◽  
pp. 1484 ◽  
Author(s):  
M. Asimuddin ◽  
Mohammed Rafi Shaik ◽  
Neeshat Fathima ◽  
M. Shaistha Afreen ◽  
Syed Farooq Adil ◽  
...  

Due to their low cost and environmentally friendly nature, plant extracts based methods have gained significant popularity among researchers for the synthesis of metallic nanoparticles. Herein, green synthesis of silver nanoparticles was performed using the aqueous solution of Ziziphus mauritiana leaves extract (ZM-LE) as a bio-reducing agent. The as-obtained silver nanoparticles were characterized by using UV-Vis spectroscopy, XRD (X-ray diffraction), TEM (transmission electron microscopy), and FT-IR (Fourier-transform infrared spectroscopy). In addition, the effects of the concentrations of the leaves extract, silver nitrate, and the temperature on the preparation of nanoparticles were also investigated. In order to determine the nature of secondary metabolites present in leaves extract, a preliminary investigation of phytoconstituents was carried out using different methods including Folin-Ciocalteu and AlCl3 methods. The results have indicated the presence of a considerable amount of phenolic and flavonoid contents in the leaves extract, which are believed to be responsible for the reduction of silver ions and stabilization of resulting nanoparticles. Indeed, the FT-IR spectrum of silver nanoparticles also confirmed the presence of residual phytomolecules of leaves extract as stabilizing ligands on the surface of nanoparticles. The antibacterial properties of as-obtained silver nanoparticles were tested against various bacterial strains including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis. The nanoparticles strongly inhibited the growth of S. aureus with a minimum inhibitory concentration (MIC) of 2.5 μg/ml and moderately inhibited the growth of E. coli with a MIC of 5 μg/ml.


2020 ◽  
Vol 16 ◽  
Author(s):  
Arfaa Sajid ◽  
Qaisar Manzoor ◽  
Anam Sajid ◽  
Muhammad Imran ◽  
Shanza Khalid ◽  
...  

Background:: Currently, developing methods for the formation of nanoparticles with antimicrobial properties based on green chemistry are the research hotspots. In this research green biosynthesis of Eriobotrya japonica extract loaded silver nanoparticles and their characterization were the main objectives to achieve. Methods:: Green synthesis of E. japonica leaves extract-loaded silver nanoparticles (AgNPs) was carried out and its effect on bacterial growth was examined. The reduction of silver ions in solution was observed using UV-Vis spectrophotometer. The properties of AgNPs were assessed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, their antibacterial effects were checked against Staphylococcus aureus and Escherichia coli. Results:: It was revealed that 5-50 nm sized spherical to elongated nanoparticles were synthesized that possessed comparatively better antibacterial potential against E. coli and S. aureus than conventional extract of the E. japonica leaves. Conclusions:: Green synthesis and effective utilization of Eriobotrya japonica extract loaded silver nanoparticles is a promising approach for nanoparticle production avoiding negative environmental impacts.


2021 ◽  
Vol 57 (4) ◽  
pp. 88-95
Author(s):  
Eduard-Marius Lungulescu ◽  
Radu Setnescu ◽  
Nicoleta-Oana Nicula ◽  
Ioana Ion ◽  
Virgil Marinescu

Composites of Silver nanoparticles/chitosan were obtained in aqueous solution, in-one step and eco-friendly synthesis, under ambiental conditions, using gamma irradiation. The radiochemical synthesis enabled obtaining of controlled size, monodisperse and high stability Silver nanoparticles. The obtained composites presented UV-Vis surface plasmon resonance comprised between 406-414 nm, depending on composition of the reactant system, spherical shape and narrow particle size distributions, with mean dimensions between 3-55 nm, and good antibacterial properties proven against Staphylococcus aureus and Escherichia coli. The influence of the Silver ions/chitosan ratio and of the pH of the initial solution on the final Ag Np properties is also discussed.


2021 ◽  
Author(s):  
Jelena S. Katanić Stanković ◽  
◽  
Nikola Srećković ◽  
Vladimir Mihailović

In this study, silver nanoparticles (AgNPs) have been synthesized using the aqueous extract of the aerial parts of B. purpurocaerulea, collected in Serbia. B. purpurocaerulea silver nanoparticles (Bp– AgNPs) synthesis was confirmed using UV-Vis spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The biological potential of synthesized Bp-AgNPs was evaluated in vitro using ABTS assay for determining free radical scavenging potential and microdilution method for analysis of antimicrobial properties. Bp-AgNPs showed high antioxidant activity similar to Bp-extract, comparable to BHT. The synthesized nanoparticles exerted remarkable antibacterial effects, with minimal inhibitory concentration (MIC) values below 20 µg/mL. In the case of some bacterial strains, the results of Bp– AgNPs were comparable or similar to standard antibiotic erythromycin. The antifungal activity of Bp– AgNPs was moderate for most of the used strains. Nevertheless, several fungi were resistant to the NPs action, while two tested Penicillium species were extremely sensitive on Bp-AgNPs with MIC lower than 40 µg/mL. The antimicrobial properties of Bp-AgNPs can be useful for the development of new NPs-containing products.


2021 ◽  
Vol 892 ◽  
pp. 36-42
Author(s):  
Muhammad Iqbal Hidayat ◽  
Muhammad Adlim ◽  
Ilham Maulana ◽  
Muhammad Zulfajri

Silver nanoparticles (Ag0) have attracted the most attention due to their broad antimicrobial application and outstanding activity. The silver nanoparticles are usually in colloidal form, then immobilization the colloid onto solid support is still interesting to explore. In this work, a new method for silver colloidal nanoparticle immobilization on silica gel beads (SiG), which was then symbolized as Ag0-[chi-SiG] was conducted and characterized successfully. The finding proved that SiG must be coated with three chitosan film layers to give stable support for silver nanoparticles. This coating method caused the chitosan completely covered SiG, and the chitosan film provides coordination bonding for silver ions. The most appropriate solvent for silver ion impregnation on the surface of chi-SiG is methanol compared to other solvents. Tungsten lamp as the photo-irradiation, which is low cost and environmentally friendly has been proven effective for silver ion reduction, as shown by silver metal colloid UV-Vis surface plasmon resonance at 400-700 nm. Ag0-[chi-SiG] showed the antibacterial properties of inhibiting the growth Staphylococcus aureus and Escherichia coli; then it provides the potential application for antibacterial filter material. According to the weight comparison between antibacterial standard and Ag content, then Ag0-[chi-SiG] has two and five times higher of exhibiting zone for each bacteria.


Author(s):  
Shyla Marjorie Haqq ◽  
Amit Chattree

  This review is based on the synthesis of silver nanoparticles (AgNPs) using a green approach which is biofabricated from various medicinal plants. AgNPs were prepared from the various parts of the plants such as the flowers, stems, leaves, and fruits. Various physiochemical characterizations were performed using the ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. AgNPs were also used to inhibit the growth of bacterial pathogens and were found to be effective against both the Gram-positive and Gram-negative bacteria. For the silver to have antimicrobial properties, it must be present in the ionized form. All the forms of silver-containing compounds with the observed antimicrobial properties are in one way or another source of silver ions. Although the antimicrobial properties of silver have been known, it is thought that the silver atoms bind to the thiol groups in enzymes and subsequently leads to the deactivation of enzymes. For the silver to have antimicrobial properties, it must be present in the ionized form. The study suggested that the action of the AgNPs on the microbial cells resulted into cell lysis and DNA damage. AgNPs have proved their candidature as a potential antibacterial against the multidrug-resistant microbes. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape, and application. Silver nanoparticle synthesis and their application are summarized and critically discussed in this review.


2020 ◽  
Author(s):  
Sara González-Fernández ◽  
Víctor Lozano-Iturbe ◽  
Beatriz García ◽  
Luis J. Andrés ◽  
Mª Fe Menéndez ◽  
...  

Abstract Background: The emergence and expansion of antibiotic resistance makes it necessary to have alternative anti-infective agents, among which silver nanoparticles (AgNPs) display especially interesting properties. AgNPs carry out their antibacterial action through various molecular mechanisms, and the magnitude of the observed effect is dependent on multiple, not fully understood, aspects, particle shape being one of the most important. In this article, we conduct a study of the antibacterial effect of a recently described type of AgNP: silver nanorings (AgNRs), making comparisons with other alternative types of AgNP synthesized in parallel using the same methodology. Results: When they act on planktonic forms, AgNRs produce a smaller effect on the viability of different bacteria than nanoparticles with other structures although their effect on growth is more intense over a longer period. When their action on biofilms is analyzed, AgNRs show a greater concentration-dependent effect. In both cases it was observed that the effect on inhibition depends on the microbial species, but not its Gram positive or negative nature. Growth patterns in silver-resistant Salmonella strains suggest that AgNRs work through different mechanisms to other AgNPs. The antibacterial effect is also produced to some extent by the conditioning of culture media or water by contact with AgNPs but, at least over short periods of time, this is not due to the release of Ag ions. Conclusions: AgNRs constitute a new type of AgNP, whose antibacterial properties depend on their shape, and is capable of acting efficiently on both planktonic bacteria and biofilms.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012012
Author(s):  
Y X Koh ◽  
H L Choo ◽  
Y H Wong ◽  
C H Yeong

Abstract A recent study showed that at least 50% of nosocomial infections are due to medical indwelling devices like surgical guides and prosthetics. This amounts to about 2 million patients affected a year. The reason for such statistics is the growth of microorganisms on the surfaces of the medical devices. There have been many attempts to create antimicrobial materials but most materials are unable to hold more than one antimicrobial agent without a secondary process. The study related to antimicrobial material with more than one type of agent is rarely found in literature. Hence, the objective of this project is to produce an antimicrobial material that can hold more than one antimicrobial agent without the need for a secondary process. The material is produced by sulfonating high impact polystyrene (HIPS) and attaching copper and silver ions. The optimum time of sulfonation of the HIPS was determined by the degree of sulfonation and ion exchange capacity. Then, the sulfonated HIPS were loaded with both copper and silver ions at different ratios. The 6-hour sample yielded the highest degree of sulfonation and ionic exchange capacity of 33.7% and 2.57 meq/g, respectively. In future work, the characterization of the 6-hour sulfonated HIPS sample loaded with copper and silver ions at different concentration ratios will be performed using TGA, DSC and FTIR spectroscopy. Lastly, the efficacy of the antimicrobial properties of the sulfonated HIPS will be tested using different bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document