scholarly journals Nanosurgical Manipulation of Titin and Its M-Complex

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Dominik Sziklai ◽  
Judit Sallai ◽  
Zsombor Papp ◽  
Dalma Kellermayer ◽  
Zsolt Mártonfalvi ◽  
...  

Titin is a multifunctional filamentous protein anchored in the M-band, a hexagonally organized supramolecular lattice in the middle of the muscle sarcomere. Functionally, the M-band is a framework that cross-links myosin thick filaments, organizes associated proteins, and maintains sarcomeric symmetry via its structural and putative mechanical properties. Part of the M-band appears at the C-terminal end of isolated titin molecules in the form of a globular head, named here the “M-complex”, which also serves as the point of head-to-head attachment of titin. We used high-resolution atomic force microscopy and nanosurgical manipulation to investigate the topographical and internal structure and local mechanical properties of the M-complex and its associated titin molecules. We find that the M-complex is a stable structure that corresponds to the transverse unit of the M-band organized around the myosin thick filament. M-complexes may be interlinked into an M-complex array that reflects the local structural and mechanical status of the transversal M-band lattice. Local segments of titin and the M-complex could be nanosurgically manipulated to achieve extension and domain unfolding. Long threads could be pulled out of the M-complex, suggesting that it is a compact supramolecular reservoir of extensible filaments. Nanosurgery evoked an unexpected volume increment in the M-complex, which may be related to its function as a mechanical spacer. The M-complex thus displays both elastic and plastic properties which support the idea that the M-band may be involved in mechanical functions within the muscle sarcomere.

2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30204 ◽  
Author(s):  
David Martinez-Martin ◽  
Carolina Carrasco ◽  
Mercedes Hernando-Perez ◽  
Pedro J. de Pablo ◽  
Julio Gomez-Herrero ◽  
...  

2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


Author(s):  
Hosam Gharib Abdelhady

Objectives: This research aims at investigating the effect of nano-encapsulating the MagnevistTM, a magnetic resonance imaging agent, within generation four, 1, 4- diaminobutane core polyamidoamine dendrimers on their molecular morphology and their nano-mechanical properties in liquid.Methods: Atomic force microscopy was applied in its imaging and force measuring modes to investigate, on the molecular scale, the morphological and nano-mechanical changes in generation four, 1, 4-diaminobutane core polyamidoamine dendrimers due to the nano-encapsulation of Magnevist in liquid.Results: The weight gain of dendrimers indicates the loading of ~ 30 Magnevist molecules. This has increased the rigidity of the dendrimer molecules, compared to unloaded dendrimers. Atomic force microscopy showed individual well-defined nano-spherical particles with nanoscopic dimensions of (40±13 nm in diameter and 4.38±0.54 nm in height). In contrast, imaging of non encapsulated dendrimers revealed loose aggregates of 15±3.5 nm in diameter and 0.9±0.2 nm in height.Conclusions: The atomic force microscopy, in liquid, was successfully applied to differentiate between Magnevist nano-encapsulated and non-encapsulated dendrimers, in their morphology and in their nano-mechanical properties. The results confirm the nano-encapsulation of Magnevist within generation four, 1,4-diaminobutane core polyamidoamine dendrimers. This loading increased the rigidity of the nanoencapsulated dendrimer, packed ~ 9 Magnevist-G 4 molecules together and may probably enhance the magnetic resonance images and increase their duration of time in the bloodstream when compared with Magnevist alone. Thus elongating the imaging sessions without the need for additional contrast agent doses.


Sign in / Sign up

Export Citation Format

Share Document