scholarly journals Bio-Inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-Linkages towards High Conductivity for Multifunctional Applications

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 208
Author(s):  
Sidra Saleemi ◽  
Mohamed Amine Aouraghe ◽  
Xiaoxiao Wei ◽  
Wei Liu ◽  
Li Liu ◽  
...  

The cross-linked hierarchical structure in biological systems provides insight into the development of innovative material structures. Specifically, the sarcoplasmic reticulum muscle is able to transmit electrical impulses in skeletal muscle due to its cross-linked hierarchical tubular cell structure. Inspired by the cross-linked tubular cell structure, we designed and built chemical cross-links between the carbon nanotubes within the carbon nanotube yarn (CNT yarn) structure by an esterification reaction. Consequently, compared with the pristine CNT yarn, its electrical conductivity dramatically enhanced 348%, from 557 S/cm to 1950 S/cm. Furthermore, when applied with three voltages, the electro-thermal temperature of esterified CNT yarn reached 261 °C, much higher than that of pristine CNT yarn (175 °C). In addition, the esterified CNT yarn exhibits a linear and stable piezo-resistive response, with a 158% enhanced gauge factor (the ratio of electrical resistance changing to strain change ~1.9). The superconductivity, flexibility, and stable sensitivity of the esterified flexible CNT yarn demonstrate its great potential in the applications of intelligent devices, smart clothing, or other advanced composites.

2020 ◽  
Vol 9 (1) ◽  
pp. 1183-1191
Author(s):  
Xinlin Li ◽  
Rixuan Wang ◽  
Leilei Wang ◽  
Aizhen Li ◽  
Xiaowu Tang ◽  
...  

AbstractDevelopment of stretchable wearable devices requires essential materials with high level of mechanical and electrical properties as well as scalability. Recently, silicone rubber-based elastic polymers with incorporated conductive fillers (metal particles, carbon nanomaterials, etc.) have been shown to the most promising materials for enabling both high electrical performance and stretchability, but the technology to make materials in scalable fabrication is still lacking. Here, we propose a facile method for fabricating a wearable device by directly coating essential electrical material on fabrics. The optimized material is implemented by the noncovalent association of multiwalled carbon nanotube (MWCNT), carbon black (CB), and silicon rubber (SR). The e-textile sensor has the highest gauge factor (GF) up to 34.38 when subjected to 40% strain for 5,000 cycles, without any degradation. In particular, the fabric sensor is fully operational even after being immersed in water for 10 days or stirred at room temperature for 8 hours. Our study provides a general platform for incorporating other stretchable elastic materials, enabling the future development of the smart clothing manufacturing.


1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


2016 ◽  
Vol 89 (4) ◽  
pp. 671-688 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The theoretical model developed by Charlesby to quantify the balance between cross-links creation of polymers and chain scission during radiation cross-linking and further modifications by Horikx to describe network breakdown from aging were merged to characterize the balance of both types of scission on the development of the sol content during de-vulcanization of rubber networks. There are, however, disturbing factors in these theoretical considerations vis-à-vis practical reality. Sulfur- and peroxide-cured NR and EPDM vulcanizates were de-vulcanized under conditions of selective cross-link and random main-chain scissions. Cross-link scission was obtained using thiol-amine reagents for selective cleavage of sulfur cross-links. Random main-chain scission was achieved by heating peroxide vulcanizates of NR with diphenyldisulfide, a method commonly employed for NR reclaiming. An important factor in the analyses of these experiments is the cross-linking index. Its value must be calculated using the sol fraction of the cross-linked network before de-vulcanization to obtain reliable results. The values for the cross-linking index calculated with sol-gel data before de-vulcanization appear to fit the experimentally determined modes of network scission during de-vulcanization very well. This study confirms that the treatment of de-vulcanization data with the merged Charlesby and Horikx models can be used satisfactorily to characterize the de-vulcanization of NR and EPDM vulcanizates.


2020 ◽  
Vol 19 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Tahere Taghizade Firozjaee ◽  
Naser Mehrdadi ◽  
Majid Baghdadi ◽  
Gholamreza Nabi Bidhendi

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1992 ◽  
Author(s):  
Alexey Kondyurin ◽  
Anastasia Eliseeva ◽  
Alexander Svistkov

A model of rubber with a cross-linked rubber layer on a carbon black filler has been proposed. The cross-links are the result of free radical reactions generated by carbon atoms with unpaired electrons at the edge of graphitic sheets in a carbon black filler. The experimental study of the cross-linking reactions in polyisoprene was done on a flat carbonized surface after ion beam implantation. The cross-linking process in the polyisoprene macromolecules between two particles was simulated. The model with a cross-linked rubber layer on a carbon filler as a “glassy layer” explains the mechanical properties of the rubber materials.


2019 ◽  
Vol 12 (1) ◽  
pp. 63-69
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Rastislav Dosoudil ◽  
Ivan Hudec

Abstract Two types of composites based on natural rubber (NR) and strontium ferrite were tested in this study. Composites of the first type were prepared by incorporation of strontium ferrite in the concentration range ranging from 0 to 100 phr (parts per hundred rubber) into pure NR based rubber matrix, while with those of the second type, strontium ferrite was dosed in the same concentration level into NR based rubber batch with constant amount of carbon black — 25 phr. For rubber matrices cross-linking, a standard sulfur based curing system was used. This work is focused on the effect of magnetic filler content on physico-mechanical, magnetic and thermo-physical properties of composite materials. Subsequently, the cross-link density and the structure of the formed sulfidic cross-links were examined. The results showed that the cross-link density of both types of composites increased with the increasing content of magnetic filler, while the structure of the sulfidic cross-links was almost not influenced by the amount of strontium ferrite. Tensile strength of rubber composites with pure rubber matrix was slightly improved by the incorporation of ferrite, while in case of composites based on a carbon black batch, the incorporation of magnetic filler resulted in the decrease of this characteristic. The presence of magnetic filler in both types of composites leads to a significant increase of the remanent magnetic induction.


1982 ◽  
Vol 94 (1) ◽  
pp. 129-142 ◽  
Author(s):  
N Hirokawa

The elaborate cross-connections among membranous organelles (MO), microtubules (MT), and neurofilaments (NF) were demonstrated in unifixed axons by the quick-freeze, deep-etch, and rotary-shadowing method. They were categorized into three groups: NF-associated cross-linker, MT-associated cross-bridges, and long cross-links in the subaxolemmal space. Other methods were also employed to make sure that the observed cross-connections in the unfixed axons were not a result of artifactual condensation or precipitation of soluble components or salt during deep-etching. Axolemma were permeablized either chemically (0.1% saponin) or physically (gentle homogenization), to allow egress of their soluble components from the axon; or else the axons were washed with distilled water after fixation. After physical rupture of the axolemma or saponin treatment, most of the MO remained intact. MT were stabilized by adding taxol in the incubation medium. Axons prepared by these methods contained many longitudinally oriented NF connected to each other by numerous fine cross-linkers (4-6 nm in diameter, 20-50 nm in length). Two specialized regions were apparent within the axons: one composed of fascicles of MT linked with each other by fine cross-bridges; the other was in the subaxolemmal space and consisted of actinlike filaments and a network of long cross-links (50-150 nm) which connected axolemma and actinlike filaments with NF and MT. F-actin was localized to the subaxolemmal space by the nitrobenzooxadiazol phallacidin method. MO were located mainly in these two specialized regions and were intimately associated with MT via fine short (10-20 nm in length) cross-bridges. Cross-links from NF to MO and MT were also common. All these cross-connections were observed after chemical extraction or physical rupture of the axon; however, these procedures removed granular materials which were attached to the filaments in the fresh unextracted axons. The cross-connections were also found in the axons washed with distilled water after fixation. I conclude that the cross- connections are real structures while the granular material is composed of soluble material, probably protein in nature.


2011 ◽  
Vol 58 (11) ◽  
pp. 4053-4060 ◽  
Author(s):  
Thomas Helbling ◽  
Cosmin Roman ◽  
Lukas Durrer ◽  
Christoph Stampfer ◽  
Christofer Hierold

2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


1969 ◽  
Vol 39 (11) ◽  
pp. 1023-1030 ◽  
Author(s):  
Edith Honold ◽  
Stanley P. Rowland ◽  
James N. Grant

Differences in the ability of formaldehyde-crosslinked cotton fibers to swell are demonstrated in terms of alkali centrifuge values (ACV), i.e., the sorption of caustic solution of mercerizing strength. The wide range in ACV (310–50) emphasizes the extremes in sorptivity that can be achieved by differences in formaldehyde content and in method of introducing the cross links. In general, the ACV decreases with increasing formaldehyde content. However, ACV higher than that of the noncross-linked control cotton are reached for those samples in which a low percentage of formaldehyde was introduced into water-swollen fibers. Various hypotheses, based on ACV and related data, are presented pertaining to the alterations in fiber structure during the cross-linking processes and during the alkali swelling centrifuge test


Sign in / Sign up

Export Citation Format

Share Document