scholarly journals An Urchin-Shaped Copper-Based Metalloporphyrin Nanosystem as a Sonosensitizer for Sonodynamic Therapy

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Aiqing Ma ◽  
Hui Ran ◽  
Jiaxing Wang ◽  
Rui Ding ◽  
Chengyu Lu ◽  
...  

Sonodynamic therapy (SDT), as a novel cancer therapy strategy, might be a promising approach due to the depth-penetration property in tissue. Sonosensitizers are the key element for efficient SDT. However, the development of sonosensitizers with strong sonosensitization efficacy is still a significant challenge. Herein, an urchin-shaped copper-based metalloporphyrin liposome nanosystem (FA–L–CuPP) is constructed and identified as an excellent sonosensitizer. Under ultrasound (US) irradiation, FA–L–CuPP can be highly excited to generate several reactive oxygen species (ROS), such as singlet oxygen (1O2) and free radicals (⋅OH). The molecular orbital distribution calculations reveal that a strong intramolecular charge transfer might occur in the CuPP complex under US irradiation, which could afford enough energy to the surrounding O2 and H2O to concert 1O2, O2− and ⋅OH. Working as “ammunitions”, the largely produced ROS can kill 4T1 tumor cells, effectively inhibiting tumor growth. This work provides an urchin-shaped nanosonosensitizer based on a copper complex, which might provide an idea to design a novel sonosensitizer for noninvasive and precise SDT antitumor applications.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yingbo Li ◽  
Jie Yang ◽  
Xilin Sun

Nanotechnology advances in cancer therapy applications have led to the development of nanomaterials that generate cytotoxic reactive oxygen species (ROS) specifically in tumor cells. ROS act as a double-edged sword, as they can promote tumorigenesis and proliferation but also trigger cell death by enhancing intracellular oxidative stress. Various nanomaterials function by increasing ROS production in tumor cells and thereby disturbing their redox balance, leading to lipid peroxidation, and oxidative damage of DNA and proteins. In this review, we outline these mechanisms, summarize recent progress in ROS-based nanomaterials, including metal-based nanoparticles, organic nanomaterials, and chemotherapy drug-loaded nanoplatforms, and highlight their biomedical applications in cancer therapy as drug delivery systems (DDSs) or in combination with chemodynamic therapy (CDT), photodynamic therapy (PDT), or sonodynamic therapy (SDT). Finally, we discuss the advantages and limitations of current ROS-mediated nanomaterials used in cancer therapy and speculate on the future progress of this nanotechnology for oncological applications.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gabriel Sigmund ◽  
Cristina Santín ◽  
Marc Pignitter ◽  
Nathalie Tepe ◽  
Stefan H. Doerr ◽  
...  

AbstractGlobally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.


2017 ◽  
Author(s):  
Shinya Nishitaka ◽  
Daisaku Mashiko ◽  
Ryosuke Iwasaki ◽  
Shin Yoshizawa ◽  
Shin-ichiro Umemura

2012 ◽  
Vol 48 (39) ◽  
pp. 4719 ◽  
Author(s):  
Manoj Kumar ◽  
Naresh Kumar ◽  
Vandana Bhalla ◽  
Parduman Raj Sharma ◽  
Yasrib Qurishi

2021 ◽  
Vol 9 ◽  
Author(s):  
Lizhen Zhang ◽  
Chengyuan Zhu ◽  
Rongtao Huang ◽  
Yanwen Ding ◽  
Changping Ruan ◽  
...  

Recently, inorganic nanomaterials have received considerable attention for use in biomedical applications owing to their unique physicochemical properties based on their shapes, sizes, and surface characteristics. Photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemical dynamic therapy (CDT), which are cancer therapeutics mediated by reactive oxygen species (ROS), have the potential to significantly enhance the therapeutic precision and efficacy for cancer. To facilitate cancer therapeutics, numerous inorganic nanomaterials have been developed to generate ROS. This mini review provides an overview of the generation mechanisms of ROS by representative inorganic nanomaterials for cancer therapeutics, including the structures of engineered inorganic nanomaterials, ROS production conditions, ROS types, and the applications of the inorganic nanomaterials in cancer PDT, SDT, and CDT.


Sign in / Sign up

Export Citation Format

Share Document