scholarly journals Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 261
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Weng Kent Chan ◽  
Hsin-Yi Tiffany Chen ◽  
Vladimir Gritsenko

High-performance p-type thin-film transistors (pTFTs) are crucial for realizing low-power display-on-panel and monolithic three-dimensional integrated circuits. Unfortunately, it is difficult to achieve a high hole mobility of greater than 10 cm2/V·s, even for SnO TFTs with a unique single-hole band and a small hole effective mass. In this paper, we demonstrate a high-performance GeSn pTFT with a high field-effect hole mobility (μFE), of 41.8 cm2/V·s; a sharp turn-on subthreshold slope (SS), of 311 mV/dec, for low-voltage operation; and a large on-current/off-current (ION/IOFF) value, of 8.9 × 106. This remarkably high ION/IOFF is achieved using an ultra-thin nanosheet GeSn, with a thickness of only 7 nm. Although an even higher hole mobility (103.8 cm2/V·s) was obtained with a thicker GeSn channel, the IOFF increased rapidly and the poor ION/IOFF (75) was unsuitable for transistor applications. The high mobility is due to the small hole effective mass of GeSn, which is supported by first-principles electronic structure calculations.

2012 ◽  
Vol 1440 ◽  
Author(s):  
Shuang Peng ◽  
Wenjun Du ◽  
Leela Rakesh ◽  
Axel Mellinger ◽  
Tolga Kaya

ABSTRACTWe proposed the use of Copper (Cu) and Zinc (Zn) nanoparticles as the electrodes for thin-film microbatteries in the applications of micro-scale sensors. Compared to the widely used lithium-based batteries, Cu and Zn nanoparticles are less expensive, less prone to oxidation (thus involving simpler fabrication steps) and flammability, safe to use, and only requires very simple fabrication processes.Even though the voltage output is inherently smaller (∼1V) than conventional lithium-based batteries, it is sufficient for low-voltage Integrated Circuits (IC) technologies such as 130 nm and 90 nm channel length transistor processes.Commercial paper will be used as the separator to demonstrate the battery capacity. Paper that acts as the separator is slurry-casted with nanoparticles (30-40 nm in size) on both sides. The thickness of the metal nanoparticles-coated thin films and the paper separator are 1 μm and 100 μm, respectively.The electrodes were developed to achieve high conductivity (lower than 1 (Ω·cm)-1) with smooth surface, good adhesion, and flexibility. The metal nanoparticles will be formulated to slurry solutions for screen printing or ink-jet printing for the battery fabrication. For fabrication purposes, the slurries viscosity is approximately in the range of 10-12 cPs at the operating temperature, a surface tension between 28-33 dynes/cm. During the fabrication process including printing/coating and sintering, reductive environment is required to minimize the oxidation. AFM (Atomic Force Microscopy) and EDS (Energy Dispersive Spectroscopy) results will be employed to demonstrate the surface morphology as well as the percentages of metal oxides. Batteries will be tested with and without an ionic liquid for comparison. Humidity effects on the battery performance will also be discussed.Different geometries that are designed to make the batteries with higher voltage or charge will be proposed. Characterization results will include the open-circuit voltage, dielectric property, charging and discharging curve, capacitance and capacity, AFM of the surface test, EDS of the electrodes and the SEM (Scanning Electron microscopy) of the particles.Ourresearch suggest that conductive paper can be scalable and could make high-performance energy storage and conversion devices at low cost and would bring new opportunities for advanced applications.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


RSC Advances ◽  
2016 ◽  
Vol 6 (35) ◽  
pp. 29164-29171 ◽  
Author(s):  
Kangjian Miao ◽  
Gil Jo Chae ◽  
Xiaoxue Wu ◽  
Qinghai Shu ◽  
Xin Zhu ◽  
...  

A semi-fluorinated DPP based polymer showed hole mobility about 3 times higher than did its non-fluorinated analogue.


2005 ◽  
Vol 870 ◽  
Author(s):  
Stijn De Vusser ◽  
Soeren Steudel ◽  
Kris Myny ◽  
Jan Genoe ◽  
Paul Heremans

AbstractIn this work, we report on high-performance low voltage pentacene Organic Thin-Film Transistors (OTFT's) and circuits. Inverters and ring oscillators have been designed and fabricated. At 15 V supply voltage, we have observed invertors showing a voltage gain of 9 and an output swing of more than 13 V. As for the ring oscillators, oscillations started at supply voltages as low as 8.5 V. At a supply voltage of only 15 V, a stage delay time of 3.3 νs is calculated from experimental results.We believe that these results show for the first time a high speed ring oscillator at relatively low supply voltages. The required supply voltages can be obtained by rectification using an organic (pentacene) diode. These results may have an important impact on the realization of RF-ID tags: by integrating our circuits with an organic diode, the fabrication of organic RF-ID tags comes closer.


2018 ◽  
Vol 281 ◽  
pp. 616-621
Author(s):  
Wei Qiang Wang ◽  
Jia Qi Niu ◽  
Yan Su

We present a simple and cost effective method for the design and fabrication of electrowetting devices using a nanocomposite thin film of BaTiO3 and Teflon-AF as the dielectric layer to achieve low voltage operation. The nanocomposite film is prepared by using Teflon-AF as matrix and BaTiO3 nanoparticles as the filler material. The solution is spin coated to deposit thin film on metal electrodes. The characterization results show that the nanocomposite thin film can serve as the dielectric for EWOD with a high dielectric constant and a crack free hydrophobic film. To test the electrowetting effect, the variation of droplet contact angle achieved with DC voltage, AC voltage and AC frequency change are fully experimented. The EWOD device with nanocomposite dielectric layer also manipulates water droplet at low driving voltages. This study shows the potential of using ferroelectric nanocomposite film as the dielectric layer in high-performance EWOD devices.


Sign in / Sign up

Export Citation Format

Share Document