scholarly journals Estimation of the Young’s Modulus of Nanometer-Thick Films Using Residual Stress-Driven Bilayer Cantilevers

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 265
Author(s):  
Luis A. Velosa-Moncada ◽  
Jean-Pierre Raskin ◽  
Luz Antonio Aguilera-Cortés ◽  
Francisco López-Huerta ◽  
Agustín L. Herrera-May

Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young’s modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young’s modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.

1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


Author(s):  
Zhiqiang Cao ◽  
Tong-Yi Zhang ◽  
Xin Zhang

Plasma-enhanced chemical vapor deposited (PECVD) silane-based oxides (SiOx) have been widely used in both microelectronics and MEMS (MicroElectroMechanical Systems) to form electrical and/or mechanical components. In this paper, a novel nanoindentation-based microbridge testing method is developed to measure both the residual stresses and Young’s modulus of PECVD SiOx films on silicon wafers. Theoretically, we considered both the substrate deformation and residual stress in the thin film and derived a closed formula of deflection versus load. The formula fitted the experimental curves almost perfectly, from which the residual stresses and Young’s modulus of the film were determined. Experimentally, freestanding microbridges made of PECVD SiOx films were fabricated using the silicon undercut bulk micromachining technique. The results showed that the as-deposited PECVD SiOx films had a residual stress of −155±17 MPa and a Young’s modulus of 74.8±3.3 GPa.


1998 ◽  
Vol 13 (11) ◽  
pp. 3027-3033 ◽  
Author(s):  
Jung Geun Kim ◽  
Jin Yu

Diamond films were deposited on the p-type Si substrate with the hot filament chemical vapor deposition (HFCVD). Residual stresses in the films were measured in air by the laser curvature, the x-ray diffraction (XRD) dϕψ − sin2ψ, and the Raman peak shift methods. All of the measuring methods showed similar behaviors of residual stress that changed from a compressive to a tensile stress with increasing the film thickness. However, values of residual stresses obtained through the Raman and XRD methods were 3–4 times higher than those of the curvature method. These discrepancies involved the setting of materials constants of CVD diamond film, and determination of a peak shifting on the XRD and Raman method. In order to elucidate the disparity, we measured a Young's moduli of diamond films by using the sonic resonance method. In doing so, the Raman and XRD peak shift were calibrated by bending diamond/Si beams with diamond films by a known amount, with stress levels known a priori from the beam theory, and by monitoring the peak shifts simultaneously. Results of each measuring method showed well coincidental behaviors of residual stresses which have the stress range from −0.5 GPa to +0.7 GPa, and an intrinsic stress was caused about +0.7 GPa with tensile stress.


2021 ◽  
Author(s):  
John Shih-Hua Chang

The metal multi-user micro-electro-mechanical-systems (MEMS) processes (MetalMUMPs®) micro-machining process includes two silicon nitride films, one polysilicon film, and one nickel film for constructing various MEMS devices. This thesis presents property measurements of the metalMUMPs® silicon nitride and nickel films. Fabricated MetalMUMPs® silicon nutride prototypes were used to experimentally determine a Young’s modulus of 209 GPa and a residual stress difference of 169 MPa for the silicon nitride films. A method, which uses the deformations along the width of bi-layered cantilever beams, was proposed to determine the residual stress difference of the two silicon nitride films. Fabricated MetalMUMPs® nickel prototypes were used to experimentally extract a Young’s modulus of 159 GPa and a residual stress gradient of -4.72 MPa/m for the nickel film. A micro bridge mechanism was developed to lift long silicon nitride beams for the determination of the residual stress difference of the two silicon nitride films.


2021 ◽  
Author(s):  
John Shih-Hua Chang

The metal multi-user micro-electro-mechanical-systems (MEMS) processes (MetalMUMPs®) micro-machining process includes two silicon nitride films, one polysilicon film, and one nickel film for constructing various MEMS devices. This thesis presents property measurements of the metalMUMPs® silicon nitride and nickel films. Fabricated MetalMUMPs® silicon nutride prototypes were used to experimentally determine a Young’s modulus of 209 GPa and a residual stress difference of 169 MPa for the silicon nitride films. A method, which uses the deformations along the width of bi-layered cantilever beams, was proposed to determine the residual stress difference of the two silicon nitride films. Fabricated MetalMUMPs® nickel prototypes were used to experimentally extract a Young’s modulus of 159 GPa and a residual stress gradient of -4.72 MPa/m for the nickel film. A micro bridge mechanism was developed to lift long silicon nitride beams for the determination of the residual stress difference of the two silicon nitride films.


2014 ◽  
Vol 23 (1-2) ◽  
pp. 15-19 ◽  
Author(s):  
Khaled A. Alnefaie

AbstractCarbon nanotubes (CNTs) were fabricated using low-pressure chemical vapor deposition and then embedded in epoxy polymer at several weight ratios, 0, 0.75, 1.5, and 3 wt%, for tensile testing and Young’s modulus determination using an Instron machine. The tensile strength and Young’s modulus of the epoxy resin were increased with the addition of CNTs to a certain extent, and then decreased with the increase in the weight fraction of CNTs. The best properties occurred at 1.5 wt% of CNTs. Scanning electron microscopy was used to reveal the dispersion status of CNTs in the nanocomposites.


2004 ◽  
Vol 15 (12) ◽  
pp. 2389-2394 ◽  
Author(s):  
Z M Zhou ◽  
Y Zhou ◽  
C S Yang ◽  
J A Chen ◽  
G F Ding ◽  
...  

1992 ◽  
Vol 276 ◽  
Author(s):  
D-G. Oei ◽  
S. L. McCarthy

ABSTRACTMeasurements of the residual stress in polysilicon films made by Low Pressure Chemical Vapor Deposition (LPCVD) at different deposition pressures and temperatures are reported. The stress behavior of phosphorus (P)-ion implanted/annealed polysilicon films is also reported. Within the temperature range of deposition, 580 °C to 650 °C, the stress vs deposition temperature plot exhibits a transition region in which the stress of the film changes from highly compressive to highly tensile and back to highly compressive as the deposition temperature increases. This behavior was observed in films that were made by the LPCVD process at reduced pressures of 210 and 320 mTORR. At deposition temperatures below 590 °C the deposit is predominantly amorphous, and the film is highly compressive; at temperatures above 610 °C (110) oriented polycrystalline silicon is formed exhibiting high compressive residual stress.


Sign in / Sign up

Export Citation Format

Share Document