scholarly journals Mechanical and Conductive Properties of Cu Matrix Composites Reinforced by Oriented Carbon Nanotubes with Different Coatings

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 266
Author(s):  
Zhong Zheng ◽  
Anxin Yang ◽  
Jiafeng Tao ◽  
Jing Li ◽  
Wenqian Zhang ◽  
...  

Because of the dilemma that the current industrial Cu enhancement methods lead to a significant decline in conductivity and ductility, Cu matrix composites reinforced by oriented multi-walled carbon nanotubes (MWCNTs) were prepared through sintering, hot extrusion, and cold drawing. Before sintering, Ni, Cu, and Ni&Cu coatings were electroless plated on MWCNTs as the intermediate transition layer, and then they were mixed with Cu powder through a nitrogen bubbling assisted ultrasonic process. By analyzing the composition, microstructure, and formation mechanism of the interface between MWCNTs and the matrix, the influence and mechanism of the interface on the mechanical properties, conductivity, and ductility of the composites were explored. The results indicated that MWCNTs maintained a highly dispersed and highly consistent orientation in the Cu matrix. The coating on Ni@CNT was the densest, continuous, and complete. The Ni@CNTs/Cu composite had the greatest effect, while the Cu composite reinforced by MWCNT without coating had the smallest reduction in elongation and conductivity. The comprehensive performance of the Cu@CNTs/Cu composite was the most balanced, with an ultimate tensile strength that reached 373 MPa, while the ductility and conductivity were not excessively reduced. The axial electrical and thermal conductivity were 79.9 IACS % (International Annealed Copper Standard) and 376 W/mK, respectively.

2008 ◽  
Vol 8 (4) ◽  
pp. 1669-1678
Author(s):  
Zhihang Fan ◽  
Suresh G. Advani

Carbon nanotubes (CNTs) do have the potential to improve the interlaminar shear strength (ILSS) of composites if they can be successfully integrated into the matrix as it infuses into the fiber preform. The infusion under capillary action of Multi-Walled Carbon Nanotubes (MWNT)/Epoxy suspension with tubes of length 0.3∼1 μm in glass fiber bundles containing pores of the order of 5 nm∼100 μm was investigated. The influence of parameters such as suspension concentration, viscosity, porous media architecture, surface tension and contact angle were explored. It was found that filtering of the suspension is a major challenge for uniform infusion for concentrations beyond 0.5% MWNT by weight. This is even truer for fiber bundles that are compacted. Hence for successful manufacturing, new infusion techniques that rely on fabrics of high permeability will have to be developed to fabricate such nanocomposites.


2013 ◽  
Vol 1552 ◽  
Author(s):  
Jeffrey R. Alston ◽  
Dylan Brokaw ◽  
Colton Overson ◽  
Thomas A. Schmedake ◽  
Jordan C. Poler

ABSTRACTSupercapacitor devices promise to be an effective means of storing energy, and delivering power for personal electronics, remote sensors, and transportation.1, 2 Rare earth metals, such as ruthenium, have been used and report high value of capacitance, specific power, and energy.4 Nevertheless, the rarity of such metals prevent their practical use. In this study we utilize an earth-abundant nickel and a controlled microwave synthesis to create nickel oxide (NiO) with an optimal nanostructure for capacitance. To surpass the lofty series resistance associated with metal oxides such as NiO, we exploit the conductive properties of single and multi-walled carbon nanotubes. The carbon nanotubes and NiO can benefit from the presence of each other by preventing unnecessary aggregation.


2012 ◽  
Vol 217-219 ◽  
pp. 567-570
Author(s):  
Dan Wang ◽  
Ke Qing Han ◽  
Wen Hui Zhang ◽  
Bin Yan ◽  
Yin Cai Tian ◽  
...  

Polyacrylonitrile(PAN)/multi-walled carbon nanotubes (MWNTs) composite fibers were prepared by melt spinning using ionic liquids (ILs) as a plasticizer. The effects of different MWNTs contents on the morphology, mechanical and conductive properties of the composite fibers were discussed. The results showed that property improvements have occurred with the adding of MWNTs. When the content of MWNTs reached 10%, the conductivity of PAN/MWNTs was 8.65×10-3 S/cm.


2011 ◽  
Vol 239-242 ◽  
pp. 2655-2658
Author(s):  
Heng Feng Li ◽  
Guo Wen He ◽  
Jun Li ◽  
Jun Chen ◽  
Jiang Cong Chen

A series of polyimide composites with various mass fractions of multi-walled carbon nanotubes (MWNTs) were prepared by in situ polymerization. MWNTs were treated with an acid mixture and sulfoxide chloride in turn to increase the chemical compatibility of carbon nanotubes with the polyimide matrix. The modified MWNTs are dispersed homogeneously in the matrix while the structure of the PI and MWNTs structures are stable in the preparation process. The composite films hold preferable thermal stability as same as the pure PI. The dielectric constants of the composites decreased with the increasing frequency and increase sharply with the adding of MWNTs.


2019 ◽  
Vol 31 (9) ◽  
pp. 1943-1948
Author(s):  
Priyabrata Mohanty ◽  
Tapan Kumar Bastia ◽  
Dibakar Behera ◽  
Shivkumari Panda

This work represents the preparation and characterization of some unique properties of vinyl ester (VE) and unsaturated polyester (UPE) blend based nanocomposites by introducing biopolymer chitosan grafted multi-walled carbon nanotubes (MWCNTs). Initially, surface grafting of MWCNTs with chitosan was performed by utilizing glutaraldehyde as a cross linking reagent through covalent deposition method and are successfully characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy(SEM). Then 50:50 wt % of vinyl ester and unsaturated polyester blend was prepared by simple sonication method. Three different specimens of VE/UPE/CS-g-MWCNTs nanocomposites were fabricated with addition of 1, 3 and 5 wt % of functionalized bionanofiller. Chitosan grafting of MWCNTs offered enhanced properties to the nanocomposites suggesting homogeneous distribution of the nanofiller in the matrix with minimum corrosion and swelling properties. 3 wt % of functionalized bionanofiller loading showed superior essential characteristics and after that the properties reduced may be due to the nucleating tendency of the nanofiller particles.


2006 ◽  
Vol 51 ◽  
pp. 64-67
Author(s):  
Jing Sun ◽  
Lian Gao

In this paper, a colloidal processing route was adopted to disperse multi-walled carbon nanotubes (MWNTs) into alumina powders homogenously. Alumina matrix composites containing 0.1 to 2 weight percent of MWNTs were successfully fabricated by pressureless sintering. Also, 1wt% MWNTs-alumina composites were prepared by hot pressing for comparison. It was found that when the sample was sintered at 1450oC, the addition of 1wt% carbon nanotubes led to 10% increase in bending strength compared with monolithic alumina. The reinforcement mechanism was discussed based on the microstructure investigation. The broken nanotubes and pullout of MWNTs at interfaces are efficient in transferring the load from the alumina matrix to the nanotubes, leading to the improvement of the mechanical properties.


2017 ◽  
Vol 52 (8) ◽  
pp. 1045-1060 ◽  
Author(s):  
Majid TabkhPaz ◽  
Dong-Yeob Park ◽  
Patrick C Lee ◽  
Ron Hugo ◽  
Simon S Park

In this study, new composite coatings are fabricated and investigated for their applications as the metal coating. The studied coatings consist of two-layered composites with various nanoparticulates as fillers in a polymeric matrix (styrene acrylic). The first layer bonded to the steel plate uses a combination of zinc particles, multi-walled carbon nanotubes, and graphene nanoplatelets. For the second layer, hexagonal boron nitride with high electrical insulation properties is added to the matrix. The morphology of the nanoparticulates is conducted using a scanning electron microscope. The coefficient of thermal expansion, cathodic disbondment resistance, gas penetration, and scratch resistance of the coatings are evaluated. The corroded area on the cathodic disbondment test specimens reduced down up to 90% for the composite with zinc (20 wt%), multi-walled carbon nanotubes (2 wt%), and graphene nanoplatelets (2 wt%), compared to a specimen coated with a pure polymer. It is seen that the presence of nanoparticulates decreased gas permeation and thermal expansion of the matrix by 75% and 65%, respectively. The addition of nanoparticulates also enhanced scratch resistance of the coating composites.


Sign in / Sign up

Export Citation Format

Share Document