scholarly journals The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 267
Author(s):  
Jessica Barichello ◽  
Paolo Mariani ◽  
Fabio Matteocci ◽  
Luigi Vesce ◽  
Andrea Reale ◽  
...  

An optimization work on dye-sensitized solar cells (DSSCs) based on both artificial and natural dyes was carried out by a fine synthesis work embedding gold nanoparticles in a TiO2 semiconductor and perfecting the TiO2 particle sizes of the scattering layer. Noble metal nanostructures are known for the surface plasmon resonance peculiarity that reveals unique properties and has been implemented in several fields such as sensing, photocatalysis, optical antennas and PV devices. By embedding gold nanoparticles in the mesoporous TiO2 layer and adding a scattering layer, we were able to boost the power conversion efficiency (PCE) to 10.8%, using an organic ruthenium complex. The same implementation was carried out using a natural dye, betalains, extracted from Sicilian prickly pear. In this case, the conversion efficiency doubled from 1 to 2% (measured at 1 SUN illumination, 100 mW/cm2 under solar simulation irradiation). Moreover, we obtained (measured at 0.1 SUN, 10 mW/cm2 under blue light LED irradiation) a record efficiency of 15% with the betalain-based dye, paving the way for indoor applications in organic natural devices. Finally, an attempt to scale up the system is shown, and a betalain-based- dye-sensitized solar module (DSSM), with an active area of 43.2 cm2 and a PCE of 1.02%, was fabricated for the first time.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Che-Lung Lee ◽  
Wen-Hsi Lee ◽  
Cheng-Hsien Yang

Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs). After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.


2015 ◽  
Vol 51 (14) ◽  
pp. 2848-2850 ◽  
Author(s):  
Chih-Liang Wang ◽  
Jin-Yun Liao ◽  
Yubao Zhao ◽  
Arumugam Manthiram

Nanobean SnO2-embedded TiO2 hollow submicrospheres as a scattering layer of dye-sensitized solar cells allow to simultaneously promote dye adsorption, light harvesting, and electron transport, leading to 28% improvement in the conversion efficiency compared to film-based SnO2.


2016 ◽  
Vol 8 (1) ◽  
pp. 236-240 ◽  
Author(s):  
Won-Yeop Rho ◽  
Mohammed Vaseem ◽  
Hwa-Young Yang ◽  
Tahmineh Mahmoudi ◽  
Seul-Ki Lee ◽  
...  

2013 ◽  
Vol 06 (02) ◽  
pp. 1350017 ◽  
Author(s):  
JUN LIU ◽  
ZHEN LIU ◽  
KANGBAO LIN ◽  
AIXIANG WEI

Highly oriented single-crystalline rutile TiO2 nanowires on transparent conductive fluorine-doped tin oxide (FTO) substrates are prepared by low-temperature hydrothermal method. The small lattice mismatch between FTO substrate and rutile TiO2 promote the epitaxial nucleation and growth of rutile TiO2 nanowires on FTO, with the diameter of 4–6 nm. Due to Van der waals force, the ultrafine nanowires tend to gather together, forming nanowire bundles. Using the ultrafine nanowire bundle array as the photoanode and ruthenium complex (N719) as the sensitizer, dye-sensitized solar cells (DSSCs) are assembled. The effect of the TiO2 nanowire gathering on the power conversion of the DSSCs has been investigated. Experimental result shows that the light-to-electricity conversion efficiency is increased by reducing the gathering of the nanowires through introducing toluene into reactant precursors. The DSSCs based on the bundles with smallest average width (i.e., least nanowire gathering) show the highest power conversion efficiency of 3.70%. The relatively high energy conversion efficiency is contributed to the large surface area, which enhances the adsorption of dye molecules.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Seigo Ito ◽  
Mohammad K. Nazeeruddin ◽  
Shaik M. Zakeeruddin ◽  
Peter Péchy ◽  
Pascal Comte ◽  
...  

In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs), it is important to optimize their porousTiO2electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of theTiO2particles and the latter shows the cross-section of theTiO2particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence ofTiO2particle size and the thickness of the nanocrystalline-TiO2electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907) and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes) are discussed in regards to conversion efficiency, which this paper aims to optimize.


2016 ◽  
Vol 4 (16) ◽  
pp. 3614-3620 ◽  
Author(s):  
Lu Zhang ◽  
Zhong-Sheng Wang

Gold nanoparticles of various sizes have been prepared and deposited on top of the TiO2 film in dye-sensitized solar cells (DSSCs) in order to enhance the light harvesting efficiency.


Sign in / Sign up

Export Citation Format

Share Document