scholarly journals Large-Scale Fabrication of Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Pesticides

Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 520 ◽  
Author(s):  
Jia Zhu ◽  
Guanzhou Lin ◽  
Meizhang Wu ◽  
Zhuojie Chen ◽  
Peimin Lu ◽  
...  

Technology transfer from laboratory into practical application needs to meet the demands of economic viability and operational simplicity. This paper reports a simple and convenient strategy to fabricate large-scale and ultrasensitive surface-enhanced Raman scattering (SERS) substrates. In this strategy, no toxic chemicals or sophisticated instruments are required to fabricate the SERS substrates. On one hand, Ag nanoparticles (NPs) with relatively uniform size were synthesized using the modified Tollens method, which employs an ultra-low concentration of Ag+ and excessive amounts of glucose as a reducing agent. On the other hand, when a drop of the colloidal Ag NPs dries on a horizontal solid surface, the droplet becomes ropy, turns into a layered structure under gravity, and hardens. During evaporation, capillary flow was burdened by viscidity resistance from the ropy glucose solution. Thus, the coffee-ring effect is eliminated, leading to a uniform deposition of Ag NPs. With this method, flat Ag NPs-based SERS active films were formed in array-well plates defined by hole-shaped polydimethylsiloxane (PDMS) structures bonded on glass substrates, which were made for convenient detection. The strong SERS activity of these substrates allowed us to reach detection limits down to 10−14 M of Rhodamine 6 G and 10−10 M of thiram (pesticide).


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1365 ◽  
Author(s):  
Silvia Dalla Marta ◽  
Chiara Novara ◽  
Fabrizio Giorgis ◽  
Alois Bonifacio ◽  
Valter Sergo




Nanoscale ◽  
2015 ◽  
Vol 7 (21) ◽  
pp. 9405-9410 ◽  
Author(s):  
Aron Hakonen ◽  
Mikael Svedendahl ◽  
Robin Ogier ◽  
Zhong-Jian Yang ◽  
Kristof Lodewijks ◽  
...  

Nanoplasmonic substrates with optimized field-enhancement properties is a key component in the continued development of surface-enhanced Raman scattering (SERS) molecular analysis but are challenging to produce inexpensively in large scale.



Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 629 ◽  
Author(s):  
Yudong Lu ◽  
Ting Zhou ◽  
Ruiyun You ◽  
Yang Wu ◽  
Huiying Shen ◽  
...  

Herein we utilized coordination interactions to prepare a novel core-shell plasmonic nanosensor for the detection of glucose. Specifically, Au nanoparticles (NPs) were strongly linked with Ag+ ions to form a sacrificial Ag shell by using 4-aminothiophenol (4-PATP) as a mediator, which served as an internal standard to decrease the influence of the surrounding on the detection. The resultant Au-PATP-Ag core-shell systems were characterized by UV-vis spectroscopy, transmission electron microscopy, and surface-enhanced Raman scattering (SERS) techniques. Experiments performed with R6G (rhodamine 6G) and CV (crystal violet) as Raman reporters demonstrated that the Au@Ag nanostructure amplified SERS signals obviously. Subsequently, the Au@Ag NPs were decorated with 4-mercaptophenylboronic acid (4-MPBA) to specifically recognize glucose by esterification, and a detection limit as low as 10−4 M was achieved. Notably, an enhanced linearity for the quantitative detection of glucose (R2 = 0.995) was obtained after the normalization of the spectral peaks using 4-PATP as the internal standard. Finally, the practical applicability of the developed sensing platform was demonstrated by the detection of glucose in urine with acceptable specificity.



Sign in / Sign up

Export Citation Format

Share Document