scholarly journals Changes in BNR Microbial Community in Response to Different Selection Pressure

Nitrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 474-490
Author(s):  
Roya Pishgar ◽  
John Albino Dominic ◽  
Joo Hwa Tay ◽  
Angus Chu

This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works.

2011 ◽  
Vol 77 (22) ◽  
pp. 7942-7953 ◽  
Author(s):  
J. P. Bassin ◽  
M. Pronk ◽  
G. Muyzer ◽  
R. Kleerebezem ◽  
M. Dezotti ◽  
...  

ABSTRACTThe long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA andamoAgenes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescencein situhybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance ofNitrospirasp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “CandidatusAccumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonassp.) and phosphate removal (“CandidatusAccumulibacter”).


2021 ◽  
Vol 9 ◽  
Author(s):  
Ana M. S. Paulo ◽  
Catarina L. Amorim ◽  
Joana Costa ◽  
Daniela P. Mesquita ◽  
Eugénio C. Ferreira ◽  
...  

Aerobic granular sludge (AGS) processes are among the most robust wastewater treatments. One of their greatest advantages is related to the granules multi-layered structure, which creates a protective barrier against organic shock loads and variable wastewater composition, particularly attractive for the treatment of industrial wastewater. However, when treating a wastewater with variable and complex composition, the difficulty in identifying factors that most affect a specific biological process increases. In this study, the effect of organic loading rate (OLR), namely carbon content, on nitrification in an AGS process treating fish canning wastewater was investigated. Besides process performance, also biomass structural changes, and microbial community composition were analysed. Reactor operation lasted for 107 days and was divided in three phases during which different OLR and C/N ratios were applied. A higher OLR was applied during the first two phases (ca. 1.1 and 1.5 kg COD m−3 day−1, respectively) compared to the third phase (between 0.12 and 0.78 kg COD m−3 day−1) and the C/N ratios also varied (ca. 4.4, 7.8, and 2.9, respectively). Throughout the operation, COD concentration in the outlet was lower than 100 mg O2 L−1. Nitrification was inhibited during the second phase and recovered afterwards. Principal component analysis (PCA) of quantitative image analysis (QIA) and performance data allowed to distinguish process changes over the three operational phases. During the first two phases, the decrease in the biomass robustness occurred, but recovered during the last phase, indicating that the high content of organic matter had possibly an effect on the aerobic granules structural characteristics. The composition of the AGS microbiome did not change substantially after the end of the higher OLR periods. The main microbial diversity shifts were mostly associated to adaptation to higher or lower carbon availability. Bacteria and inferred enzymes associated to nitrogen and phosphorous removal were identified. Chryseobacterium, a bacterium with high metabolic versatility, was able to adapt to the organic shock load, becoming dominant over operation. Despite the variable composition of the fish canning wastewater, carbon was identified as the main driver for nitrification inhibition, while promoting changes in the physical characteristics and on the microbial community of granules.


2005 ◽  
Vol 90 (6) ◽  
pp. 761-769 ◽  
Author(s):  
M.K. de Kreuk ◽  
J.J. Heijnen ◽  
M.C.M. van Loosdrecht

Sign in / Sign up

Export Citation Format

Share Document