scholarly journals Amelioration of High-Insulin-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restoration of GLUT4 Translocation

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 914 ◽  
Author(s):  
Filip Vlavcheski ◽  
Danja J. Den Hartogh ◽  
Adria Giacca ◽  
Evangelia Tsiani

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), is linked to hyperinsulinemia, which develops to counterbalance initial peripheral hormone resistance. Studies indicate that chronically elevated levels of insulin lead to skeletal muscle insulin resistance by deregulating steps within the insulin signaling cascade. The polyphenol resveratrol (RSV) has been shown to have antidiabetic properties in vitro and in vivo. In the present study, we examined the effect of RSV on high insulin (HI)-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal muscle cells were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to HI levels (100 nM) for 24 h decreased the acute-insulin-stimulated 2DG uptake, indicating insulin resistance. HI increased ser307 and ser636/639 phosphorylation of IRS-1 (to 184% ± 12% and 225% ± 28.9% of control, with p < 0.001 and p < 0.01, respectively) and increased the phosphorylation levels of mTOR (174% ± 6.7% of control, p < 0.01) and p70 S6K (228% ± 33.5% of control, p < 0.01). Treatment with RSV abolished these HI-induced responses. Furthermore, RSV increased the activation of AMPK and restored the insulin-mediated increase in plasma membrane GLUT4 glucose transporter levels. These data suggest that RSV has a potential to counteract the HI-induced muscle insulin resistance.

2020 ◽  
Vol 21 (14) ◽  
pp. 4900
Author(s):  
Danja J. Den Hartogh ◽  
Filip Vlavcheski ◽  
Adria Giacca ◽  
Evangelia Tsiani

Insulin resistance, a main characteristic of type 2 diabetes mellitus (T2DM), is linked to obesity and excessive levels of plasma free fatty acids (FFA). Studies indicated that significantly elevated levels of FFAs lead to skeletal muscle insulin resistance, by dysregulating the steps in the insulin signaling cascade. The polyphenol resveratrol (RSV) was shown to have antidiabetic properties but the exact mechanism(s) involved are not clearly understood. In the present study, we examined the effect of RSV on FFA-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal myotubes were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to FFA palmitate decreased the insulin-stimulated glucose uptake, indicating insulin resistance. Palmitate increased ser307 (131% ± 1.84% of control, p < 0.001) and ser636/639 (148% ± 10.1% of control, p < 0.01) phosphorylation of IRS-1, and increased the phosphorylation levels of mTOR (174% ± 15.4% of control, p < 0.01) and p70 S6K (162% ± 20.2% of control, p < 0.05). Treatment with RSV completely abolished these palmitate-induced responses. In addition, RSV increased the activation of AMPK and restored the insulin-mediated increase in (a) plasma membrane GLUT4 glucose transporter levels and (b) glucose uptake. These data suggest that RSV has the potential to counteract the FFA-induced muscle insulin resistance.


2009 ◽  
Vol 202 (3) ◽  
pp. 441-451 ◽  
Author(s):  
Donato A Rivas ◽  
Ben B Yaspelkis ◽  
John A Hawley ◽  
Sarah J Lessard

The serine/threonine protein kinase, mammalian target of rapamycin (mTOR) is regulated by insulin and nutrient availability and has been proposed to play a central role as a nutrient sensor in skeletal muscle. mTOR associates with its binding partners, raptor and rictor, to form two structurally and functionally distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) respectively. We have investigated the assembly of mTORC1/2 and the activation of their downstream substrates (i.e. Akt, S6K1) in response to known effectors of mTOR, excess lipid availability and AMP-activated protein kinase (AMPK) activation/exercise training in rat skeletal muscle. The in vivo formation of mTORC1 and 2 and the activation of their respective downstream substrates were increased in response to chronic (8 weeks) consumption of a high-fat diet. Diet-induced mTORC activation and skeletal muscle insulin resistance were reversed by 4 weeks of exercise training, which was associated with enhanced muscle AMPK activation. In order to determine whether AMPK activation reverses lipid-induced mTOR activation, L6 myotubes were exposed to 0.4 mM palmitate to activate mTORC1/2 in the absence or presence of 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR). Palmitate exposure (4 h) increased insulin-stimulated S6K1 Thr389 phosphorylation by 60%, indicating activation of mTORC1. AMPK activation with 1 mM AICAR abolished lipid-induced mTOR activation in vitro. Our data implicates reductions in mTOR complex activation with the reversal of lipid-induced skeletal muscle insulin resistance in response to exercise training or AICAR and identifies mTOR as a potential target for the treatment of insulin resistance.


Author(s):  
Hye Kyoung Sung ◽  
Patricia L. Mitchell ◽  
Sean Gross ◽  
Andre Marette ◽  
Gary Sweeney

Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.


1967 ◽  
Vol 35 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Y. Shimada ◽  
D. A. Fischman ◽  
A. A. Moscona

Dissociated myoblasts from 12-day chick embryos were cultured in monolayer, and the differentiation of skeletal muscle cells was studied by electron microscopy. The results have revealed a striking ultrastructural similarity between the in vivo and the in vitro developing muscle, particularly with respect to the myofibrils and sarcoplasmic reticulum. This study demonstrates that all the characteristic organelles of mature skeletal muscle can develop in vitro in the absence of nerves.


2019 ◽  
Author(s):  
Rowan P. Rimington ◽  
Darren J. Player ◽  
Neil R.W. Martin ◽  
Mark P. Lewis

AbstractObjectiveOsteoarthritis (OA) is a musculoskeletal disease which contributes to severe morbidity. The monosodium iodoacetate (MIA) rodent model of OA is now well established, however the effect of MIA on surrounding tissues post injection has not been investigated and as such the impact on phenotypic development is unknown. The aim of this investigation was to examine the impact of MIA incubation on skeletal muscle cells in vitro, to provide an indication as to the potential influence of MIA administration of skeletal muscle in vivo.MethodsC2C12 skeletal muscle myotubes were treated with either 4.8μM MIA or 10μM Dexamethasone (DEX, positive atrophic control) up to 72hrs post differentiation and sampled for morphological and mRNA analyses.ResultsSignificant morphological effects (fusion index, number of myotubes and myotube width, p<0.05) were evident, demonstrating a hypertrophic phenotype in control (CON) compared to a hyperplasic phenotype in MIA and DEX. Increases in MAFbx mRNA were also evident between conditions, with post-hoc analysis demonstrating significance between CON and DEX (p<0.001), but not between CON and MIA (p>0.05).ConclusionsThese data indicate a significant impact of both DEX and MIA on regeneration and hypertrophy in vitro and suggest differential activating mechanisms. Future investigations should determine whether skeletal muscle regeneration and hypertrophy is affected in the in vivo rodent model and the potential impact this has on the OA phenotypic outcome.


2016 ◽  
Vol 113 (7) ◽  
pp. 1889-1894 ◽  
Author(s):  
Salvatore Iovino ◽  
Alison M. Burkart ◽  
Laura Warren ◽  
Mary Elizabeth Patti ◽  
C. Ronald Kahn

Induced pluripotent stem cells (iPS cells) represent a unique tool for the study of the pathophysiology of human disease, because these cells can be differentiated into multiple cell types in vitro and used to generate patient- and tissue-specific disease models. Given the critical role for skeletal muscle insulin resistance in whole-body glucose metabolism and type 2 diabetes, we have created a novel cellular model of human muscle insulin resistance by differentiating iPS cells from individuals with mutations in the insulin receptor (IR-Mut) into functional myotubes and characterizing their response to insulin in comparison with controls. Morphologically, IR-Mut cells differentiated normally, but had delayed expression of some muscle differentiation-related genes. Most importantly, whereas control iPS-derived myotubes exhibited in vitro responses similar to primary differentiated human myoblasts, IR-Mut myotubes demonstrated severe impairment in insulin signaling and insulin-stimulated 2-deoxyglucose uptake and glycogen synthesis. Transcriptional regulation was also perturbed in IR-Mut myotubes with reduced insulin-stimulated expression of metabolic and early growth response genes. Thus, iPS-derived myotubes from individuals with genetically determined insulin resistance demonstrate many of the defects observed in vivo in insulin-resistant skeletal muscle and provide a new model to analyze the molecular impact of muscle insulin resistance.


2008 ◽  
Vol 88 (11) ◽  
pp. 1279-1296 ◽  
Author(s):  
Lorraine P Turcotte ◽  
Jonathan S Fisher

The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and increases the lipid oxidative capacity of muscle cells. Thus, aerobic exercise training may prevent insulin resistance by correcting a mismatch between fatty acid uptake and fatty acid oxidation in skeletal muscle. Additionally, a single session of aerobic exercise increases glucose uptake by muscle during exercise, increases the ability of insulin to promote glucose uptake, and increases glycogen accumulation after exercise, all of which are important to blood glucose control. There also is some indication that resistance exercise may be effective in preventing insulin resistance. The information provided is intended to help clinicians understand and explain the roles of exercise in reducing insulin resistance.


Leonardo ◽  
2015 ◽  
Vol 48 (3) ◽  
pp. 270-271
Author(s):  
Miranda D. Grounds

The contraction of specialized skeletal muscle cells results in classic movements of bones and other parts of the body that are vital for life. There is exquisite control over the movement of diverse types of muscles. This paper indicates the way in which skeletal muscles (myofibres) are formed; then factors that contribute to generating the movement are outlined: these include the nerve, sarcomeres, cytoskeleton, cell membrane and the extracellular matrix. The factors controlling the movement of mature myofibres in 3-dimensional tissues in vivo are vastly more complex than for tissue cultured immature muscle cells in an artificial in vitro environment.


Sign in / Sign up

Export Citation Format

Share Document