scholarly journals Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Hispolon in Mice, Through Regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 Pathways, and Suppressing Oxidative Stress-Mediated ER Stress-Induced Apoptosis and Autophagy

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1742 ◽  
Author(s):  
Ching-Ying Huang ◽  
Jeng-Shyan Deng ◽  
Wen-Chin Huang ◽  
Wen-Ping Jiang ◽  
Guan-Jhong Huang

The anti-inflammatory effect of hispolon has identified it as one of the most important compounds from Sanghuangporus sanghuang. The research objectives were to study this compound using an animal model by lipopolysaccharide (LPS)-induced acute lung injury. Hispolon treatment reduced the production of the pro-inflammatory mediator NO, TNF-α, IL-1β, and IL-6 induced by LPS challenge in the lung tissues, as well as decreasing their histological alterations and protein content. Total cell number was also reduced in the bronchoalveolar lavage fluid (BALF). Moreover, hispolon inhibited iNOS, COX-2 and IκB-α and phosphorylated IKK and MAPK, while increasing catalase, SOD, GPx, TLR4, AKT, HO-1, Nrf-2, Keap1 and PPARγ expression, after LPS challenge. It also regulated apoptosis, ER stress and the autophagy signal transduction pathway. The results of this study show that hispolon regulates LPS-induced ER stress (increasing CHOP, PERK, IRE1, ATF6 and GRP78 protein expression), apoptosis (decreasing caspase-3 and Bax and increasing Bcl-2 expression) and autophagy (reducing LC3 I/II and Beclin-1 expression). This in vivo experimental study suggests that hispolon suppresses the LPS-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy and has the potential to be used therapeutically in major anterior segment lung diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Limei Wan ◽  
Weibin Wu ◽  
Shunjun Jiang ◽  
Shanhe Wan ◽  
Dongmei Meng ◽  
...  

Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.



2005 ◽  
Vol 230 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Ken-ichiro Inoue ◽  
Hirohisa Takano ◽  
Rie Yanagisawa ◽  
Miho Sakurai ◽  
Akinori Shimada ◽  
...  

Urinary trypsin inhibitor (UTI), a serine protease inhibitor, has been widely used as a drug for patients with acute inflammatory disorders such as disseminated intravascular coagulation, shock, and pancreatitis. However, direct contribution of UTI to inflammatory diseases has not been established. The present study analyzed acute inflammatory lung injury induced by lipopolysaccharide (LPS) in UTI-deficient (–/–) mice and corresponding wild-type (WT) mice. UTI (–/–) and WT mice were treated intratracheally with vehicle or LPS (125 μg/kg). The cellular profile of bronchoalveolar lavage fluid, lung water content, histology, and expression of proinflammatory molecules in the lung were evaluated. After LPS challenge, both genotypes of mice revealed neutrophilic lung inflammation and pulmonary edema. UTI (–/–) mice, however, showed more prominent infiltration of inflammatory cells and edema than WT mice. After LPS challenge in both genotypes of mice, the lung levels of mRNA and/or protein expression of interleukin-1β, macrophage inflammatory protein-1α, macrophage chemoattractant protein-1, keratinocyte chemoattractant, and intercellular adhesion molecule-1 (ICAM-1) were elevated in both groups, but to a greater extent in UTI (–/–) mice than in WT mice. These results suggest that UTI protects against acute lung injury induced by bacterial endotoxin, at least partly, through the inhibition of the enhanced local expression of proinflammatory cytokines, chemokines, and ICAM-1.



Author(s):  
Ruben Colunga Biancatelli ◽  
Pavel Solopov ◽  
Elizabeth R Sharlow ◽  
John S Lazo ◽  
Paul Ellis Marik ◽  
...  

Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface Spike protein (SP) and angiotensin converting enzyme-2 (ACE2). It is unknown if the viral Spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 Spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19 - associated lung injury 72 hours later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cell and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury and activation of STAT3 and NFκB pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared to K18-hACE2 mice. Further, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.



2021 ◽  
Vol 14 (10) ◽  
pp. 1046
Author(s):  
I-Chen Chen ◽  
Shu-Chi Wang ◽  
Yi-Ting Chen ◽  
Hsin-Han Tseng ◽  
Po-Len Liu ◽  
...  

Acute lung injury (ALI) is a high mortality disease with acute inflammation. Corylin is a compound isolated from the whole plant of Psoralea corylifolia L. and has been reported to have anti-inflammatory activities. Herein, we investigated the therapeutic potential of corylin on lipopolysaccharides (LPS)-induced ALI, both in vitro and in vivo. The levels of proinflammatory cytokine secretions were analyzed by ELISA; the expressions of inflammation-associated proteins were detected using Western blot; and the number of immune cell infiltrations in the bronchial alveolar lavage fluid (BALF) were detected by multicolor flow cytometry and lung tissues by hematoxylin and eosin (HE) staining, respectively. Experimental results indicated that corylin attenuated LPS-induced IL-6 production in human bronchial epithelial cells (HBEC3-KT cells). In intratracheal LPS-induced ALI mice, corylin attenuated tissue damage, suppressed inflammatory cell infiltration, and decreased IL-6 and TNF-α secretions in the BALF and serum. Moreover, it further inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including p-JNK, p-ERK, p-p38, and repressed the activation of signal transducer and activator of transcription 3 (STAT3) in lungs. Collectively, our results are the first to demonstrate the anti-inflammatory effects of corylin on LPS-induced ALI and suggest corylin has significant potential as a novel therapeutic agent for ALI.



Author(s):  
Yung-Hung Hsieh ◽  
Jeng-Shyan Deng ◽  
Chang Yuan-Shiun ◽  
Guan-Jhong Huang

The anti-inflammatory effect of ginsenoside Rh2 (GRh2) is one of the most important ginsenosides. The purpose of this study is to identify the anti-inflammatory and antioxidant effects of GRh2 after LPS challenge lung injury animal model. GRh2 reduced LPS-induced NO, TNF-α, IL-1, IL-4, IL-6 and IL-10 productions in lung tissues. GRh2 treatment decreased the histological alterations in the lung tissues and BALF protein content and total cells number also diminished in LPS-induced lung injury mice. Moreover, GRh2 blocked iNOS, COX-2, the phosphorylation of IκB-α, ERK, JNK, p38, Raf-1 and MEK protein expression which is corresponded to the growth of HO-1, Nrf-2, catalase, SOD and GPx expressions in LPS-induce lung injury. An experimental study has suggested that GRh2 has provided with anti-inflammatory effects in vivo, and its potential therapeutic efficacy in major anterior segment lung diseases.



2011 ◽  
Vol 111 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Anthony D. Dorr ◽  
Michael R. Wilson ◽  
Kenji Wakabayashi ◽  
Alicia C. Waite ◽  
Brijesh V. Patel ◽  
...  

Elevated soluble tumor necrosis factor-α receptor (sTNFR) levels in bronchoalveolar lavage fluid (BALF) are associated with poor patient outcome in acute lung injury (ALI). The mechanisms underlying these increases are unknown, but it is possible that pulmonary inflammation and increased alveolar epithelial permeability may individually contribute. We investigated mechanisms of elevated BALF sTNFRs in two in vivo mouse models of ALI. Anesthetized mice were challenged with intratracheal lipopolysaccharide or subjected to injurious mechanical ventilation. Lipopolysaccharide instillation produced acute intra-alveolar inflammation, but minimal alveolar epithelial permeability changes, with increased BALF sTNFR p75, but not p55. Increased p75 levels were markedly attenuated by alveolar macrophage depletion. In contrast, injurious ventilation induced substantial alveolar epithelial permeability, with increased BALF p75 and p55, which strongly correlated with total protein. BALF sTNFRs were not increased in isolated buffer-perfused lungs (devoid of circulating sTNFRs) subjected to injurious ventilation. These results suggest that lipopolysaccharide-induced intra-alveolar inflammation upregulates alveolar macrophage-mediated production of sTNFR p75, whereas enhanced alveolar epithelial permeability following mechanical ventilation leads to increased BALF p75 and p55 via plasma leakage. These data provide new insights into differential regulation of intra-alveolar sTNFR levels during ALI and may suggest sTNFRs as potential markers for evaluating the pathophysiology of ALI.



2005 ◽  
Vol 289 (5) ◽  
pp. L807-L815 ◽  
Author(s):  
Jörg Reutershan ◽  
Abdul Basit ◽  
Elena V. Galkina ◽  
Klaus Ley

Infiltration of activated neutrophils [polymorphonuclear leukocytes (PMN)] into the lung is an important component of the inflammatory response in acute lung injury. The signals required to direct PMN into the different compartments of the lung have not been fully elucidated. In a murine model of LPS-induced lung injury, we investigated the sequential recruitment of PMN into the pulmonary vasculature, lung interstitium, and alveolar space. Mice were exposed to aerosolized LPS and bronchoalveolar lavage fluid (BAL), and lungs were harvested at different time points. We developed a flow cytometry-based technique to assess in vivo trafficking of PMN in the intravascular and extravascular lung compartments. Aerosolized LPS induced consistent PMN migration into all lung compartments. We found that sequestration in the pulmonary vasculature occurred within the first hour. Transendothelial migration into the interstitial space started 1 h after LPS exposure and increased continuously until a plateau was reached between 12 and 24 h. Transepithelial migration into the alveolar air space was delayed, as the first PMN did not appear until 2 h after LPS, reaching a peak at 24 h. Transendothelial migration and transepithelial migration were inhibited by pertussis toxin, indicating involvement of Gαi-coupled receptors. These findings confirm LPS-induced migration of PMN into the lung. For the first time, distinct transmigration steps into the different lung compartments are characterized in vivo.



2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Eduarda Talita Bramorski Mohr ◽  
Marcus Vinicius Pereira dos Santos Nascimento ◽  
Júlia Salvan da Rosa ◽  
Guilherme Nicácio Vieira ◽  
Iara Fabricia Kretzer ◽  
...  

Background. In spite of the latest therapeutic developments, no effective treatments for handling critical conditions such as acute lung injuries have yet been found. Such conditions, which may result from lung infections, sepsis, multiple trauma, or shock, represent a significant challenge in intensive care medicine. Seeking ways to better deal with this challenge, the scientific community has recently devoted much attention to small molecules derived from natural products with anti-inflammatory and immunomodulatory effects. Aims. In this context, we investigated the anti-inflammatory effect of Rubiadin-1-methyl ether isolated from Pentas schimperi, using an in vitro model of RAW 264.7 macrophages induced by LPS and an in vivo model of acute lung injury (ALI) induced by LPS. Methods. The macrophages were pretreated with the compound and induced by LPS (1 μg/mL). After 24 h, using the supernatant, we evaluated the cytotoxicity, NOx, and IL-6, IL-1β, and TNF-α levels, as well as the effect of the compound on macrophage apoptosis. Next, the compound was administered in mice with acute lung injury (ALI) induced by LPS (5 mg/kg), and the pro- and anti-inflammatory parameters were analyzed after 12 h using the bronchoalveolar lavage fluid (BALF). Results. Rubiadin-1-methyl ether was able to inhibit the pro-inflammatory parameters studied in the in vitro assays (NOx, IL-6, and IL-1β) and, at the same time, increased the macrophage apoptosis rate. In the in vivo experiments, this compound was capable of decreasing leukocyte infiltration; fluid leakage; NOx; IL-6, IL-12p70, IFN-γ, TNF-α, and MCP-1 levels; and MPO activity. In addition, Rubiadin-1-methyl ether increased the IL-10 levels in the bronchoalveolar lavage fluid (BALF). Conclusions. These findings support the evidence that Rubiadin-1-methyl ether has important anti-inflammatory activity, with evidence of an immunomodulatory effect.



2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chun-jun Chu ◽  
Nai-yu Xu ◽  
Xian-lun Li ◽  
Long Xia ◽  
Jian Zhang ◽  
...  

Rabdosia japonicavar.glaucocalyx(Maxim.) Hara, belonging to theLabiataefamily, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers.Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction ofRabdosia japonicavar.glaucocalyx(Maxim.) Hara (RJFs) in acute lung injury (ALI) mice induced by lipopolysaccharide (LPS).Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg) per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3) in serum was quantified by a sandwich ELISA kit.Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF-α, IL-6, and IL-1β), and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO) activity and nitric oxide (NO) and protein concentration in BALF.Conclusions. RJFs significantly attenuate LPS-induced ALIviareducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.



2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shuaiwei Wang ◽  
Yafang Sun ◽  
Yu Bai ◽  
Nannan Zhou ◽  
Na Chen ◽  
...  

Connexin (Cx) family members form hemichannels (HCs) and gap junctions (GJs). Biological functions of Cx HCs have not been adequately characterized due to the inability to selectively target HCs or GJs. Recently, we developed a 6-mer peptide mimetic (P5) of the first extracellular loop of Cx43 and showed that it can block the permeability of HCs but not GJs formed by Cx43. In this study, we further characterized the HC blocking property of P5 and investigated the role of Cx HCs in acute lung injury (ALI). We found that P5 administration decreased HC permeability, in pulmonary microvascular endothelial cells, HepG2 cells, and even Cx43-deficient astrocytes, which express different sets of Cxs, suggesting that P5 is a broad spectrum Cx HC blocker. In addition, P5 reduced HC permeability of alveolar cells in vivo. Moreover, P5 decreased endotoxin-induced release, by vascular endothelial cells in vitro, of high mobility group box protein 1 (HMGB1), a critical mediator of acute lung injury (ALI), and reduced HMGB1 accumulation in bronchoalveolar lavage fluid (BALF) of mice subjected to intratracheal endotoxin instillation. Furthermore, P5 administration resulted in a significant decrease in the concentrations of ALT, AST, and LDH in the BALF, the accumulation of leukocytes in alveoli, and the mortality rate of mice subjected to ALI. Wright-Giemsa staining showed that P5 caused similar reductions of both neutrophils and monocytes in BALF of ALI mice. Together, these results suggest that Cx HCs mediate HMGB1 release, augment leukocyte recruitment, and contribute to ALI pathology.



Sign in / Sign up

Export Citation Format

Share Document