scholarly journals Sex Differences in Early Programming by Maternal High Fat Diet Induced-Obesity and Fish Oil Supplementation in Mice

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3703
Author(s):  
Latha Ramalingam ◽  
Kalhara R. Menikdiwela ◽  
Stephani Spainhour ◽  
Tochi Eboh ◽  
Naima Moustaid-Moussa

Pre-pregnancy obesity is a contributing factor for impairments in offspring metabolic health. Interventional strategies during pregnancy are a potential approach to alleviate and/or prevent obesity and obesity related metabolic alterations in the offspring. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) exerts metabolic health benefits. However, the role of FO in early life remains still unknown. Hence, this study objective was to determine the effect of FO supplementation in mice from pre-pregnancy through lactation, and to study the post-natal metabolic health effects in gonadal fat and liver of offspring fed high fat (HF) diet with or without FO. Female C57BL6J mice aged 4–5 weeks were fed a HF (45% fat) diet supplemented with or without FO (30 g/kg of diet) and low fat (LF; 10% fat) pre-pregnancy through lactation. After weaning, offspring (male and female) from HF or FO dams either continued the same diet (HF-HF and FO-FO) or switched to the other diet (HF-FO and FO-HF) for 13 weeks, creating four groups of treatment, and LF-LF was used as a control group. Serum, gonadal fat and liver tissue were collected at termination for metabolic analyses. Offspring of both sexes fed HF with or without fish oil gained (p < 0.05) more weight post weaning, compared to LF-LF-fed mice. All the female offspring groups supplemented with FO had reduced body weight compared to the respective male groups. Further, FO-FO supplementation in both sexes (p < 0.05) improved glucose clearance and insulin sensitivity compared to HF-HF. All FO-FO fed mice had significantly reduced adipocyte size compared to HF-HF group in both male and females. Inflammation, measured by mRNA levels of monocyte chemoattractant protein 1 (Mcp1), was reduced (p < 0.05) with FO supplementation in both sexes in gonadal fat and in the liver. Markers of fatty acid synthesis, fatty acid synthase (Fasn) showed no sex specific differences in gonadal fat and liver of mice supplemented with HF. Female mice had lower liver triglycerides than male counterparts. Supplementation of FO in mice improved metabolic health of offspring by lowering markers of lipid synthesis and inflammation.

2013 ◽  
Vol 91 (11) ◽  
pp. 960-965 ◽  
Author(s):  
Kelby Cleverley ◽  
Xiaozhou Du ◽  
Sheena Premecz ◽  
Khuong Le ◽  
Matthew Zeglinski ◽  
...  

Owing to their spontaneous development of atherosclerosis, apolipoprotein E knockout mice (ApoEKO) are one of the best studied animal models for this disease. Little is known about the utility of various omega-3 fatty acid regimens, in particular fish oils, in preventing cardiac disease in ApoEKO mice. The purpose of this study was to determine the cardiovascular effects of omega-3 fatty acid supplementation with either safflower oil (control), fish oil, flaxseed oil, or designed oil in ApoEKO mice fed a high-fat diet for a total of 16 weeks. In-vivo cardiac function was assessed weekly using murine echocardiography. Blood pressure, plasma lipid levels, and brain natriuretic peptide (BNP) were serially measured. The results show that ApoEKO mice fed fish oil demonstrated an increase in left ventricular wall thickness as a result of increased afterload. Despite chronic treatment with fish oil over 16 weeks, blood pressure increased in ApoEKO mice by 20% compared with the baseline. Both echocardiographic evidence of left ventricular hypertrophy and biochemical increase in BNP levels confirmed diastolic dysfunction in ApoEKO mice fed fish oil. This suggests that high-fat diet supplemented with fish oil may lead to adverse cardiovascular effects in ApoE deficient mice.


2008 ◽  
Vol 36 (01) ◽  
pp. 81-93 ◽  
Author(s):  
Myung-Sook Choi ◽  
Un Ju Jung ◽  
Hye-Jin Kim ◽  
Gyeong-Min Do ◽  
Seon-Min Jeon ◽  
...  

This study examined the effect of a Du-zhong (Eucommia ulmoides Oliver) leaf extract (0.175 g/100 g diet) that was supplemented with a high-fat diet (10% coconut oil, 0.2% cholesterol, wt/wt) on hyperlipidemic hamsters. Hamsters fed with Du-zhong leaf extract for 10 weeks showed a smaller size of epididymal adipocytes compared to the control group. The supplementation of the Du-zhong leaf extract significantly lowered the plasma levels of triglyceride, total cholesterol, LDL-cholesterol, non HDL-cholesterol, and free fatty acid, whereas it elevated the HDL-cholesterol/total cholesterol ratio and apolipoprotein A-I levels. The hepatic cholesterol concentration was lower in the Du-zhong group than in the control group. The plasma total cholesterol concentration was positively correlated with hepatic HMG- CoA reductase activity (r = 0.547, p < 0.05) and hepatic cholesterol concentration (r = 0.769, p < 0.001). The hepatic fatty acid synthase and HMG- CoA reductase activities were significantly lowered by a Du-zhong leaf extract supplement in high fat-fed hamsters. Hepatic fatty acid synthase activity was positively correlated with plasma fatty acid concentration (r = 0.513, p < 0.05) that was lower in the Du-zhong group. These results demonstrate that the Du-zhong leaf extract exhibits antihyperlipidemic properties by suppressing hepatic fatty acid and cholesterol biosynthesis with the simultaneous reduction of plasma and hepatic lipids in high fat-fed hamsters.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2176 ◽  
Author(s):  
Jungbin Song ◽  
Young-Sik Kim ◽  
Linae Kim ◽  
Hyo Jin Park ◽  
Donghun Lee ◽  
...  

Prunus persica (L.) Batsch is a deciduous fruit tree cultivated worldwide. The flower of P. persica (PPF), commonly called the peach blossom, is currently consumed as a tea for weight loss in East Asia; however, its anti-obesity effects have yet to be demonstrated in vitro or in vivo. Since PPF is rich in phytochemicals with anti-obesity properties, we aimed to investigate the effects of PPF on obesity and its underlying mechanism using a diet-induced obesity model. Male C57BL/6 mice were fed either normal diet, high-fat diet (HFD), or HFD containing 0.2% or 0.6% PPF water extract for 8 weeks. PPF significantly reduced body weight, abdominal fat mass, serum glucose, alanine transaminase and aspartate aminotransferase levels, and liver and spleen weights compared to the HFD control group. Real-time quantitative polymerase chain reaction analysis revealed that PPF suppressed lipogenic gene expression, including stearoyl-CoA desaturase-1 and -2 and fatty acid synthase, and up-regulated the fatty acid β-oxidation gene, carnitine palmitoyltransferase-1, in the liver. Our results suggest that PPF exerts anti-obesity effects in obese mice and these beneficial effects might be mediated through improved hepatic lipid metabolism by reducing lipogenesis and increasing fatty acid oxidation.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3652
Author(s):  
Suresh Khadke ◽  
Pallavi Mandave ◽  
Aniket Kuvalekar ◽  
Vijaya Pandit ◽  
Manjiri Karandikar ◽  
...  

Type 2 diabetes mellitus, which an outcome of impaired insulin action and its secretion, is concomitantly associated with lipid abnormalities. The study was designed to evaluate the combinational effect of omega-3 fatty acids (flax and fish oil) and glibenclamide on abnormal lipid profiles, increased blood glucose, and impaired liver and kidney functions in a high fat diet with low streptozotocin (STZ)-induced diabetic rats, including its probable mechanism of action. The male Wistar rats (n = 48) were distributed into eight groups. All animal groups except the healthy received a high fat diet (HFD) for 90 days. Further, diabetes was developed by low dose STZ (35 mg/kg). Diabetic animals received, omega-3 fatty acids (500 mg/kg), along with glibenclamide (0.25 mg/kg). Both flax and fish oil intervention decreased (p ≤ 0.001) serum triglycerides and very low density lipoprotein and elevated (p ≤ 0.001) high density lipoprotein levels in diabetic rats. Total cholesterol and low-density lipoprotein level was decreased (p ≤ 0.001) in fish oil-treated rats. However, it remained unaffected in the flax oil treatment group. Both flax and fish oil intervention downregulate the expression of fatty acid metabolism genes, transcription factors (sterol regulatory element-binding proteins-1c and nuclear factor-κβ), and their regulatory genes i.e., acetyl-coA carboxylase alpha, fatty acid synthase, and tumor necrosis factors-α. The peroxisome proliferator-activated receptor gamma gene expression was upregulated (p ≤ 0.001) in the fish oil treatment group. Whereas, carnitine palmitoyltransferase 1 and fatty acid binding protein gene expression were upregulated (p ≤ 0.001) in both flax and fish oil intervention group.


2014 ◽  
Vol 112 (11) ◽  
pp. 1797-1804 ◽  
Author(s):  
Yue Yang ◽  
Tho X. Pham ◽  
Casey J. Wegner ◽  
Bohkyung Kim ◽  
Chai Siah Ku ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is significantly associated with hyperlipidaemia and oxidative stress. We have previously reported that astaxanthin (ASTX), a xanthophyll carotenoid, lowers plasma total cholesterol and TAG concentrations in apoE knockout mice. To investigate whether ASTX supplementation can prevent the development of NAFLD in obesity, male C57BL/6J mice (n 8 per group) were fed a high-fat diet (35 %, w/w) supplemented with 0, 0·003, 0·01 or 0·03 % of ASTX (w/w) for 12 weeks. The 0·03 % ASTX-supplemented group, but not the other groups, exhibited a significant decrease in plasma TAG concentrations, suggesting that ASTX at a 0·03 % supplementation dosage exerts a hypotriacylglycerolaemic effect. Although there was an increase in the mRNA expression of fatty acid synthase and diglyceride acyltransferase 2, the mRNA levels of acyl-CoA oxidase 1, a critical enzyme in peroxisomal fatty acid β-oxidation, exhibited an increase in the 0·03 % ASTX-supplemented group. There was a decrease in plasma alanine transaminase (ALT) and aspartate transaminase (AST) concentrations in the 0·03 % ASTX-supplemented group. There was a significant increase in the hepatic mRNA expression of nuclear factor erythroid 2-related factor 2 and its downstream genes, which are critical for endogenous antioxidant mechanism, in the 0·03 % ASTX-supplemented group. Furthermore, there was a significant decrease in the mRNA abundance of IL-6 in the primary splenocytes isolated from the 0·03 % ASTX-supplemented group upon lipopolysaccharide (LPS) stimulation when compared with that in the splenocytes isolated from the control group. In conclusion, ASTX supplementation lowered the plasma concentrations of TAG, ALT and AST, increased the hepatic expression of endogenous antioxidant genes, and rendered splenocytes less sensitive to LPS stimulation. Therefore, ASTX may prevent obesity-associated metabolic disturbances and inflammation.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Chikako Sugiura ◽  
Shiho Nishimatsu ◽  
Tatsuya Moriyama ◽  
Sayaka Ozasa ◽  
Teruo Kawada ◽  
...  

To elucidate the inhibiting mechanisms of fat accumulation by catechins, caffeine, and epigallocatechin gallate (EGCG), ICR mice were fed diets containing either 0.3% catechins or 0.1% EGCG and/or 0.05% caffeine for 4 weeks. After the feeding, intraperitoneal adipose tissues weights were significantly lower in the caffeine, catechins + caffeine, and EGCG + caffeine groups compared to controls. Hepatic fatty acid synthase (FAS) activity in the catechins + caffeine group was significantly lower, and the activities of acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase-II (CPT-II) were significantly higher, compared to the control group. However, these activities were not observed in the other groups. FAS mRNA expression levels in the catechins + caffeine group were significantly lower than in the control group. ACO and CPT-II mRNA levels were not different among all of the treatment groups. These findings indicate that the inhibitory effects of fat accumulation via a combination of catechins, EGCG, or caffeine were stronger collectively than by either catechins, EGCG, or caffeine alone. Moreover, it was demonstrated that the combination of catechins and caffeine induced inhibition of fat accumulation by suppression of fatty acid synthesis and upregulation of the enzymatic activities involved inβ-oxidation of fatty acid in the liver, but this result was not observed by combination of EGCG and caffeine.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Yueh-Hsiung Kuo ◽  
Cheng-Hsiu Lin ◽  
Chun-Ching Shih ◽  
Chang-Syun Yang

The purpose of this study was to screen firstly the potential effects of antcin K (AnK), the main constituent of the fruiting body ofAntrodia camphorata,in vitroand further evaluate the activities and mechanisms in high-fat-diet- (HFD-) induced mice. Following 8-week HFD-induction, mice were treated with AnK, fenofibrate (Feno), metformin (Metf), or vehicle for 4 weeks afterward. In C2C12 myotube cells, the membrane GLUT4 and phospho-Akt expressions were higher in insulin and AnK-treated groups than in the control group. It was observed that AnK-treated mice significantly lowered blood glucose, triglyceride, total cholesterol, and leptin levels in AnK-treated groups. Of interest, AnK at 40 mg/kg/day dosage displayed both antihyperglycemic effect comparable to Metf (300 mg/kg/day) and antihypertriglyceridemic effect comparable to Feno (250 mg/kg/day). The combination of significantly increased skeletal muscular membrane expression levels of glucose transporter 4 (GLUT4) but decreased hepatic glucose-6-phosphatase (G6 Pase) mRNA levels by AnK thus contributed to a decrease in blood glucose levels. Furthermore, AnK enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK) expressions in the muscle and liver. Moreover, AnK treatment exhibited inhibition of hepatic fatty acid synthase (FAS) but enhancement of fatty acid oxidation peroxisome proliferator-activated receptorα(PPARα) expression coincident with reduced sterol response element binding protein-1c (SREBP-1c) mRNA levels in the liver may contribute to decreased plasma triglycerides, hepatic steatosis, and total cholesterol levels. The present findings indicate that AnK displays an advantageous therapeutic potential for the management of type 2 diabetes and hyperlipidemia.


2019 ◽  
Vol 20 (19) ◽  
pp. 4897 ◽  
Author(s):  
Cheng-Hsiu Lin ◽  
Li-Wei Hsiao ◽  
Yueh-Hsiung Kuo ◽  
Chun-Ching Shih

The present study was designed to evaluate the protective effect of sulphurenic acid (SA), a pure compound from Antrodia camphorata, on diabetes and hyperlipidemia in an animal model study and to clarify the underlying molecular mechanism. Diabetes was induced by daily 55 mg/kg intraperitoneal injections of streptozotocin (STZ) solution over five days. Diabetic mice were randomly divided into six groups and orally gavaged with SA (at three dosages) or glibenclamide (Glib), fenofibrate (Feno) or vehicle for 3 weeks. Our findings showed that STZ-induced diabetic mice had significantly increased fasting blood glucose, glycated hemoglobin (HbA1C), plasma triglyceride (TG), and total cholesterol (TC) levels (p < 0.001, p < 0.001, p < 0.001, and p < 0.05, respectively) but decreased blood insulin, adiponectin, and leptin levels compared to those of the control group (p < 0.001, p < 0.001, and p < 0.001, respectively). Administration of SA to STZ-induced diabetic mice may lower blood glucose but it increased the insulin levels with restoration of the size of the islets of Langerhans cells, implying that SA protected against STZ-induced diabetic states within the pancreas. At the molecular level, SA treatment exerts an increase in skeletal muscle expression levels of membrane glucose transporter 4 (GLUT4) and phospho-Akt to increase the membrane glucose uptake, but the mRNA levels of PEPCK and G6Pase are decreased to inhibit hepatic glucose production, thus leading to its hypoglycemic effect. Moreover, SA may cause hypolipidemic effects not only by enhancing hepatic expression levels of peroxisome proliferator-activated receptor α (PPARα) with increased fatty acid oxidation but also by reducing lipogenic fatty acid synthase (FAS) as well as reducing mRNA levels of sterol regulatory element binding protein (SREBP)1C and SREBP2 to lower blood TG and TC levels. Our findings demonstrated that SA displayed a protective effect against type 1 diabetes and a hyperlipidemic state in STZ-induced diabetic mice.


2013 ◽  
Vol 3 (11) ◽  
pp. 428 ◽  
Author(s):  
Marie S. Ramsvik ◽  
Bodil Bjørndal ◽  
Rita Vik ◽  
Inge Bruheim ◽  
Jon Skorve ◽  
...  

Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA) level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL) secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH) could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w) diet containing 20% crude protein (w/w) as casein (control group) or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma.Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG) and non-esterified fatty acids (NEFAs). The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4) and to BA exporters to blood (Abcc3 and Abcc4). Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr) mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα) target gene carnitine plamitoyltransferase 2 (CPT-2). Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.Key words: Krill protein hydrolysate, triacylglycerol, fatty acids, TNFα


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Sign in / Sign up

Export Citation Format

Share Document