scholarly journals An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 306
Author(s):  
Sónia Rocha ◽  
Natália Aniceto ◽  
Rita C. Guedes ◽  
Hélio M. T. Albuquerque ◽  
Vera L. M. Silva ◽  
...  

Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure–activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5306
Author(s):  
Beiyun Shen ◽  
Xinchen Shangguan ◽  
Zhongping Yin ◽  
Shaofu Wu ◽  
Qingfeng Zhang ◽  
...  

The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.


Author(s):  
MUTHUSWAMY UMAMAHESWARI ◽  
Preetha Prabhu ◽  
KUPPUSAMY ASOKKUMAR ◽  
THIRUMALAISAMY SIVASHANMUGAM ◽  
Varadharajan Subhadradevi ◽  
...  

2020 ◽  
Vol 19 (08) ◽  
pp. 2050029
Author(s):  
Suhailah Wasman Qader ◽  
Hassan H. Abdallah ◽  
Mstaffa Zahid ◽  
Lee Suan Chua

Acetylcholinesterase (AChE) is a key enzyme enhancing the cognitive disorder, leading to Alzheimer’s disease, and AChE inhibition is a crucial therapeutic mechanism against it. Matricaria recutita (MR) is widely used as a herbal medicine due to its phytotherapeutic properties. For this reason, MR flower was evaluated to identify polyphenolic compounds (PC), and then each PC is examined for AChE inhibitory activity. The ultra-performance liquid chromatography-electrospray tandem mass spectrometry UPLC-ESI-MS/MS was used to detect PC, and molecular docking was performed to insight potential inhibitory activity of PC against AChE. A series of 13 PC compounds were identified in the fractions of MR plant. Docking studies revealed that the inhibitory free energy and the position of the docked compounds in the active site are favored for the active compounds complex formed between AChE and the identified PC compounds. The accurate analysis of the docking result demonstrates that Kaempferol-3-O-rutinoside (KR) and Luteolin-8-C-glucoside (orientin) (LG) are the most significant inhibitory compounds against AChE. It can be concluded that MR is a significant source of PC compounds, and KR and LG are the most promising compounds that have high-affinity binding to AChE, based on docking outcome. Further experiments are recommended to explore in vivo enzyme compound interaction and toxicity models to establish the maximum suggested dose.


2021 ◽  
Author(s):  
Po-Chun Chen ◽  
Bongani Sicelo Dlamini ◽  
Chiy-Rong Chen ◽  
Yueh-Hsiung Kuo ◽  
Wen-Ling Shih ◽  
...  

Abstract In the continuous search for α-glucosidase inhibitors, eleven phenolic compounds (1-11) were isolated from the root bark of Paeonia suffruticosa. Their α-glucosidase inhibitory activity and inhibition mechanism were investigated using an in vitro inhibition assay and molecular docking studies. Compounds 2, 5, 6, and 8-11 (IC50 between 290 and 431 µM) inhibited α-glucosidase more effectively than the reference compound acarbose (IC50=1463 ± 29.5 µM). Among them, compound 10 exhibited the highest α-glucosidase inhibitory effect with an IC50 value of 290.4 ± 9.6 µM. Compounds 2, 5, 9 10 and 11 were found to be competitive inhibitors, while compounds 6 and 8 were noncompetitive inhibitors of α-glucosidase. Computational analyses showed that the main binding forces between the compounds and the main residues were hydrogen bonds. The results indicated that these compounds had considerable α-glucosidase inhibitory activity.


2021 ◽  
Vol 17 ◽  
Author(s):  
Reguia Mahfoudi ◽  
Amar Djeridane ◽  
Djilali Tahri ◽  
Mohamed Yousfi

Background: Inhibition of α-amylase and α-glucosidase is considered as an important therapeutic target to manage type 2 diabetes mellitus (T2DM), reducing postprandial hyperglycemia (PPHG). Objective: The present work explored the antidiabetic activities of five artificial food colorings by α-amylase and α-glucosidase enzyme inhibition in vitro and in Silico. Methods: In this study, inhibition of α-amylase and α-glucosidase were evaluated. Further, the interaction between enzymes (α-amylase and α-glucosidase) and ligands (food colorings) was followed by QSAR and molecular docking studies. Results: The in vitro results obtained show that the blue patent (SIN131) exhibited more potent inhibition with IC50 values of 0.03± 0.01 mM and 0.014±0.001 mM against α-amylase and α-glucosidase inhibition respectively compared to acarbose. The QSAR study found a strong correlation between IC50 values with four molecular descriptors. This linear regression confirms that a strong polarity (Apol) and a low hydrophobia (ALogP) favor the inhibitory effect of these colorings toward both enzymes. Also, a negative role of the number of heavy atoms has been demonstrated in the phenomenon of inhibition of this enzyme. Finally, the descriptor εlumo (electronic affinity) plays a crucial role on the inhibitory power of these dyes toward both enzymes by electron transfer. The virtual screening of the inhibition of α-amylase and α-glucosidase by these colorings, using Molegro Virtual Docker (MVD), allowed us to obtain stable complexes with interaction energies resulting from the place of hydrogen bonds and several hydrophobic interactions. However, the sulfonate groups of these colorings can be the major factors in the inhibition of these enzymes. On the other hand, Rerank Score with the pose are perfectly correlated (R2> 0.76) to the inhibitory activity of these food colorings measured experimentally. Conclusion: The present study suggests that the Blue Patent V (SIN131) effectively act as α-amylase and α-glucosidase inhibitor leading to a reduction in starch hydrolysis and hence eventually to lowered glucose levels.


2021 ◽  
Author(s):  
Siva Swapna Kasarla ◽  
Swapnil Borse ◽  
Yashwant Kumar ◽  
Neha Sharma ◽  
Madhu Dikshit

Abstract AimWithania somnifera Dunal (WS), known as Ashwagandha and AYUSH-64, a polyherbal formulation are repurposed for the management of COVID-19. The extensive use of these botanicals as home remedy along with other drugs for managing multifarious disease conditions is increasing over nations. This raises high chances of herb-drug interactions (HDIs) which may be beneficial, harmful, or even fatal. Therefore, current study aimed to explore the CYP mediated herb-drug interactions (HDIs) of Ashwagandha and AYUSH-64 along with case example of remdesivir to harness the best of these HDIs for integrative management of COVID-19Materials and MethodsThe aqueous extract of Ashwagandha and AYUSH-64 were characterized by LC-MS/MS. The in-silico pharmacokinetic (ADME) parameters were studied by using ADME tool. The in-vitro CYP-450 (CYP3A4, 2C8, 2D6) inhibition studies of WS and AYUSH-64 alone and in combination with a remdesivir were carried out resembling clinically scenario.ResultsTotal of 11 and 24 phytoconstituents were identified from the aqueous extract of Aswagandha and AYUSH-64. The in-silico ADME studies revealed that most of the phytoconstituents showed good oral bioavailability, drug likeliness, GI affinity and some of them displayed CYP-450 inhibitory activity. The in-vitro CYP-450 studies of remdesivir showed moderate inhibitory effect on CYP3A4, 2C8, 2D6. The aqueous extract of Aswagandha did not show any inhibitory activity towards all the studied CYP’s alone and in combination with remdesivir (IC50 >100µg/ml). Whereas, AYUSH-64 also followed the same trend but showed moderate inhibitory effect on CYP2C8 (IC50 <100µg/ml).ConclusionAswagandha did not exhibit HDIs with the CYP3A4, CYP2C8 and CYP2D6 thereby seem to be safe to co-administer with respective substrates. Whereas, AYUSH-64 only showed moderate HDIs towards CYP2C8 substrate among studied CYP enzymes. Caution is therefore warranted for prescribing AYUSH 64 along with CYP2C8 substrate drugs.


Sign in / Sign up

Export Citation Format

Share Document