scholarly journals Ultraviolet-C Irradiation, Heat, and Storage as Potential Methods of Inactivating SARS-CoV-2 and Bacterial Pathogens on Filtering Facepiece Respirators

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 83
Author(s):  
Rhodri Harfoot ◽  
Deborah B. Y. Yung ◽  
William A. Anderson ◽  
Cervantée E. K. Wild ◽  
Nicolene Coetzee ◽  
...  

The arrival of SARS-CoV-2 to Aotearoa/New Zealand in February 2020 triggered a massive response at multiple levels. Procurement and sustainability of medical supplies to hospitals and clinics during the then upcoming COVID-19 pandemic was one of the top priorities. Continuing access to new personal protective equipment (PPE) was not guaranteed; thus, disinfecting and reusing PPE was considered as a potential alternative. Here, we describe part of a local program intended to test and implement a system to disinfect PPE for potential reuse in New Zealand. We used filtering facepiece respirator (FFR) coupons inoculated with SARS-CoV-2 or clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii Ab5075, methicillin-resistant Staphylococcus aureus USA300 LAC and cystic-fibrosis isolate Pseudomonas aeruginosa LESB58), to evaluate the potential use of ultraviolet-C germicidal irradiation (UV-C) or dry heat treatment to disinfect PPE. An applied UV-C dose of 1000 mJ/cm2 was sufficient to completely inactivate high doses of SARS-CoV-2; however, irregularities in the FFR coupons hindered the efficacy of UV-C to fully inactivate the virus, even at higher UV-C doses (2000 mJ/cm2). Conversely, incubating contaminated FFR coupons at 65 °C for 30 min or 70 °C for 15 min, was sufficient to block SARS-CoV-2 replication, even in the presence of mucin or a soil load (mimicking salivary or respiratory secretions, respectively). Dry heat (90 min at 75 °C to 80 °C) effectively killed 106 planktonic bacteria; however, even extending the incubation time up to two hours at 80 °C did not completely kill bacteria when grown in colony biofilms. Importantly, we also showed that FFR material can harbor replication-competent SARS-CoV-2 for up to 35 days at room temperature in the presence of a soil load. We are currently using these findings to optimize and establish a robust process for decontaminating, reusing, and reducing wastage of PPE in New Zealand.

2017 ◽  
Vol 39 (1) ◽  
pp. 94-96 ◽  
Author(s):  
Jennifer L. Cadnum ◽  
Aaron A. Shaikh ◽  
Christina T. Piedrahita ◽  
Annette L. Jencson ◽  
Emily L. Larkin ◽  
...  

Mobile ultraviolet-C (UV-C) light room decontamination devices are frequently used as an adjunct to standard cleaning in healthcare facilities, but their efficacy in killing Candida species is not clear. In laboratory testing, the emerging multidrug-resistant Candida auris and 2 other Candida species were significantly less susceptible to killing by UV-C than methicillin-resistant Staphylococcus aureus.Infect Control Hosp Epidemiol 2018;39:94–96


Author(s):  
Cole Meisenhelder ◽  
Loïc Anderegg ◽  
Andrew Preecha ◽  
Chiu Oan Ngooi ◽  
Lei Liao ◽  
...  

Current shortages of Filtering Facepiece Respirators (FFRs) have created a demand for effective methods for N95 decontamination and reuse. Before implementing any reuse strategy it is important to determine what effects the proposed method has on the physical functioning of the FFR. Here we investigate the effects of two potential methods for decontamination; dry heat at 95 °C, and autoclave treatments. We test both fit and filtration efficiency for each method. For the dry heat treatment we consider the 3M 1860, 3M 1870, and 3M8210+ models. After five cycles of the dry heating method, all three FFR models pass both fit and filtration tests, showing no degradation. For the autoclave tests we consider the 3M 1870, and the 3M 8210+. We find significant degradation of the FFRs following the 121 °C autoclave cycles. The molded mask tested (3M 8210+) failed fit testing after just 1 cycle in the autoclave. The pleated (3M 1870) mask passed fit testing for 5 cycles, but failed filtration testing. The 95 °C dry heat cycle is scalable to over a thousand masks per day in a hospital setting, and is above the temperature which has been shown to achieve the requisite 3 log kill of SARS-CoV-2[1], making it a promising method for N95 decontamination and reuse.


2020 ◽  
Vol 5 (1) ◽  
pp. 52 ◽  
Author(s):  
Jennifer L. Cadnum ◽  
Daniel Li ◽  
Sarah N. Redmond ◽  
Amrita R. John ◽  
Basya Pearlmutter ◽  
...  

Background-Shortages of personal protective equipment (PPE) including N95 filtering facepiece respirators is an urgent concern in the setting of the global COVID-19 pandemic.  Decontamination of PPE could be useful to maintain adequate supplies, but there is uncertainty regarding the efficacy of decontamination technologies.Methods-A modification of the American Society for Testing and Materials standard quantitative carrier disk test method (ASTM E-2197-11) was used to examine the effectiveness of ultraviolet-C (UV-C) light, a high-level disinfection cabinet that generates aerosolized peracetic acid and hydrogen peroxide, and dry heat at 70°C for 30 minutes for decontamination of bacteriophages Phi6 and MS2 and methicillin-resistant Staphylococcus aureus (MRSA) inoculated onto 3 commercial N95 respirators.  Three and 6 log10 reductions on N95 respirators were considered effective for decontamination and disinfection, respectively. Results-UV-C administered as a 1-minute cycle in a UV-C box or a 30-minute cycle by a room decontamination device reduced contamination but did not meet criteria for decontamination of the viruses from all sites for any of the N95s.  The high-level disinfection cabinet was effective for decontamination of all the organisms from the N95s and achieved disinfection with 3 disinfection cycles over ~60 minutes.  Dry heat at 70°C for 30 minutes was not effective for decontamination of the bacteriophages.  Conclusions-UV-C could be useful to reduce contamination on N95 respirators.  However, the UV-C technologies studied did not meet our criteria for decontamination under the test conditions used.  The high-level disinfection cabinet was effective for decontamination of N95s and met criteria for disinfection with multiple cycles.


2020 ◽  
Vol 41 (12) ◽  
pp. 1384-1387
Author(s):  
Piyali Chatterjee ◽  
Hosoon Choi ◽  
Brennan Ochoa ◽  
Gennifer Garmon ◽  
John D. Coppin ◽  
...  

AbstractBackground:Candida auris is an emerging and often multidrug-resistant fungal pathogen with an exceptional ability to persist on hospital surfaces. These surfaces can act as a potential source of transmission. Therefore, effective disinfection strategies are urgently needed. We investigated the efficacy of ultraviolet C light (UV-C) disinfection for C. auris isolates belonging to 4 different clades.Methods:In vitro testing of C. auris isolates was conducted using 106 colony-forming units (CFU) spread on 20-mm diameter steel carriers and exposed to a broad-spectrum UV-C light source for 10, 20, and 30 minutes at a 1.5 m (5 feet) distance. Post-UV survivors on the coupons were subsequently plated. Colony counts and log reductions were recorded, calculated, and compared to untreated control carriers. Identification of all isolates were confirmed by MALDI-TOF and morphology was visualized by microscopy.Results:We observed an increased susceptibility of C. auris to UV-C in 8 isolates belonging to clades I, II and IV with increasing UV exposure time. The range of log kill (0.8–1.19) was highest for these isolates at 30 minutes. But relatively no change in log kill (0.04–0.35) with increasing time in isolates belonging to clade III were noted. Interestingly, C. auris isolates susceptible to UV-C were mostly nonaggregating, but the isolates that were more resistant to UV exposure formed aggregates.Conclusions:Our study suggests variability in susceptibility to UV-C of C. auris isolates belonging to different clades. More studies are needed to assess whether a cumulative impact of prolonged UV-C exposure provides additional benefit.


2020 ◽  
Vol 41 (S1) ◽  
pp. s33-s33
Author(s):  
Michihiko Goto ◽  
Erin Balkenende ◽  
Gosia Clore ◽  
Rajeshwari Nair ◽  
Loretta Simbartl ◽  
...  

Background: Enhanced terminal room cleaning with ultraviolet C (UVC) disinfection has become more commonly used as a strategy to reduce the transmission of important nosocomial pathogens, including Clostridioides difficile, but the real-world effectiveness remains unclear. Objectives: We aimed to assess the association of UVC disinfection during terminal cleaning with the incidence of healthcare-associated C. difficile infection and positive test results for C. difficile within the nationwide Veterans Health Administration (VHA) System. Methods: Using a nationwide survey of VHA system acute-care hospitals, information on UV-C system utilization and date of implementation was obtained. Hospital-level incidence rates of clinically confirmed hospital-onset C. difficile infection (HO-CDI) and positive test results with recent healthcare exposures (both hospital-onset [HO-LabID] and community-onset healthcare-associated [CO-HA-LabID]) at acute-care units between January 2010 and December 2018 were obtained through routine surveillance with bed days of care (BDOC) as the denominator. We analyzed the association of UVC disinfection with incidence rates of HO-CDI, HO-Lab-ID, and CO-HA-LabID using a nonrandomized, stepped-wedge design, using negative binomial regression model with hospital-specific random intercept, the presence or absence of UVC disinfection use for each month, with baseline trend and seasonality as explanatory variables. Results: Among 143 VHA acute-care hospitals, 129 hospitals (90.2%) responded to the survey and were included in the analysis. UVC use was reported from 42 hospitals with various implementation start dates (range, June 2010 through June 2017). We identified 23,021 positive C. difficile test results (HO-Lab ID: 5,014) with 16,213 HO-CDI and 24,083,252 BDOC from the 129 hospitals during the study period. There were declining baseline trends nationwide (mean, −0.6% per month) for HO-CDI. The use of UV-C had no statistically significant association with incidence rates of HO-CDI (incidence rate ratio [IRR], 1.032; 95% CI, 0.963–1.106; P = .65) or incidence rates of healthcare-associated positive C. difficile test results (HO-Lab). Conclusions: In this large quasi-experimental analysis within the VHA System, the enhanced terminal room cleaning with UVC disinfection was not associated with the change in incidence rates of clinically confirmed hospital-onset CDI or positive test results with recent healthcare exposure. Further research is needed to understand reasons for lack of effectiveness, such as understanding barriers to utilization.Funding: NoneDisclosures: None


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 801
Author(s):  
Talita Nicolau ◽  
Núbio Gomes Filho ◽  
Andrea Zille

In normal conditions, discarding single-use personal protective equipment after use is the rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece respirators. When the demand for these protective tools is not satisfied by the companies supplying them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators. To achieve this goal, we adopted a systematic literature review in multiple databases added to a snowball method to make our sample as robust as possible and encompass a more significant number of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods. Combining this characteristic with other advantages makes UV-C sterilization desirable compared to other methods, despite its possible disadvantages.


2020 ◽  
Vol 41 (S1) ◽  
pp. s292-s292
Author(s):  
William Rutala ◽  
Hajime Kanamori ◽  
Maria Gergen ◽  
Emily Sickbert-Bennett ◽  
David Jay Weber

Background:Candida auris is an emerging fungal pathogen that is often resistant to major classes of antifungal drugs. It is considered a serious global health threat because it has caused severe infections with frequent mortality in over a dozen countries. C. auris can survive on healthcare environmental surfaces for at least 7 days, and it causes outbreaks in healthcare facilities. C. auris has an environmental route of transmission. Thus, infection prevention strategies, such as surface disinfection and room decontamination technologies (eg, ultraviolet [UV-C] light), will be essential to controlling transmission. Unfortunately, data are limited regarding the activity of UV-C to inactivate this pathogen. In this study, a UV-C device was evaluated for its antimicrobial activity against C. auris and C. albicans. Methods: We tested the antifungal activity of a single UV-C device using the vegetative bacteria cycle, which delivers a reflected dose of 12,000 µW/cm2. This testing was performed using Formica sheets (7.6 × 7.6 cm; 3 × 3 inches). The carriers were inoculated with C. auris or C. albicans and placed horizontal on the surface or vertical (ie, perpendicular) to the vertical UV-C lamp and at a distance from 1. 2 m (~4 ft) to 2.4 m (~8 ft). Results: Direct UV-C, with or without FCS (log10 reduction 4.57 and 4.45, respectively), exhibited a higher log10 reduction than indirect UV-C for C. auris (log10 reduction 2.41 and 1.96, respectively), which was statistically significant (Fig. 1 and Table 1). For C. albicans, although direct UV-C had a higher log10 reduction (log10 reduction with and without FCS, 5.26 and 5.07, respectively) compared to indirect exposure (log10 reduction with and without FCS, 3.96 and 3.56, respectively), this difference was not statistically significant. The vertical UV had statistically higher log10 reductions than horizontal UV against C. auris and C. albicans with FCS and without FCS. For example, for C. auris with FCS the log10 reduction for vertical surfaces was 4.92 (95% CI 3.79, 6.04) and for horizontal surfaces the log10 reduction was 2.87 (95% CI, 2.36–3.38). Conclusions:C. auris can be inactivated on environmental surfaces by UV-C as long as factors that affect inactivation are optimized (eg, exposure time). These data and other published UV-C data should be used in developing cycle parameters that prevent contaminated surfaces from being a source of acquisition by staff or patients of this globally emerging pathogen.Funding: NoneDisclosures: None


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Jake Everett ◽  
Keith Turner ◽  
Qiuxian Cai ◽  
Vernita Gordon ◽  
Marvin Whiteley ◽  
...  

ABSTRACT Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa’s swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients.


Sign in / Sign up

Export Citation Format

Share Document