scholarly journals The Role of TRPA1 Channels in the Central Processing of Odours Contributing to the Behavioural Responses of Mice

2021 ◽  
Vol 14 (12) ◽  
pp. 1336
Author(s):  
János Konkoly ◽  
Viktória Kormos ◽  
Balázs Gaszner ◽  
Zoltán Sándor ◽  
Angéla Kecskés ◽  
...  

Transient receptor potential ankyrin 1 (TRPA1), a nonselective cation channel, contributes to several (patho)physiological processes. Smell loss is an early sign in several neurodegenerative disorders, such as multiple sclerosis, Parkinson’s and Alzheimer’s diseases; therefore, we focused on its role in olfaction and social behaviour with the aim to reveal its potential therapeutic use. The presence of Trpa1 mRNA was studied along the olfactory tract of mice by combined RNAscope in situ hybridisation and immunohistochemistry. The aversive effects of fox and cat odour were examined in parallel with stress hormone levels. In vitro calcium imaging was applied to test if these substances can directly activate TRPA1 receptors. The role of TRPA1 in social behaviour was investigated by comparing Trpa1 wild-type and knockout mice (KO). Trpa1 mRNA was detected in the olfactory bulb and piriform cortex, while its expression was weak in the olfactory epithelium. Fox, but not cat odour directly activated TRPA1 channels in TRPA1-overexpressing Chinese Hamster Ovary cell lines. Accordingly, KO animals showed less aversion against fox, but not cat odour. The social interest of KO mice was reduced during social habituation–dishabituation and social interaction, but not during resident–intruder tests. TRPA1 may contribute to odour processing at several points of the olfactory tract and may play an important role in shaping the social behaviour of mice. Thus, TRPA1 may influence the development of certain social disorders, serving as a potential drug target in the future.

2014 ◽  
Vol 306 (12) ◽  
pp. F1442-F1450 ◽  
Author(s):  
Gentzon Hall ◽  
Janelle Rowell ◽  
Federica Farinelli ◽  
Rasheed A. Gbadegesin ◽  
Peter Lavin ◽  
...  

The emerging role of the transient receptor potential cation channel isotype 6 (TRPC6) as a central contributor to various pathological processes affecting podocytes has generated interest in the development of therapeutics to modulate its function. Recent insights into the regulation of TRPC6 have revealed PKG as a potent negative modulator of TRPC6 conductance and associated signaling via its phosphorylation at two highly conserved amino acid residues: Thr69/Thr70 (Thr69 in mice and Thr70 in humans) and Ser321/Ser322 (Ser321 in mice and Ser322 in humans). Here, we tested the role of PKG in modulating TRPC6-dependent responses in primary and conditionally immortalized mouse podocytes. TRPC6 was phosphorylated at Thr69 in nonstimulated podocytes, but this declined upon ANG II stimulation or overexpression of constitutively active calcineurin phosphatase. ANG II induced podocyte motility in an in vitro wound assay, and this was reduced 30–60% in cells overexpressing a phosphomimetic mutant TRPC6 (TRPC6T70E/S322E) or activated PKG ( P < 0.05). Pretreatment of podocytes with the PKG agonists S-nitroso- N-acetyl-dl-penicillamine (nitric oxide donor), 8-bromo-cGMP, Bay 41–2772 (soluble guanylate cyclase activator), or phosphodiesterase 5 (PDE5) inhibitor 4-{[3′,4′-(methylenedioxy)benzyl]amino}[7]-6-methoxyquinazoline attenuated ANG II-induced Thr69 dephosphorylation and also inhibited TRPC6-dependent podocyte motility by 30–60%. These data reveal that PKG activation strategies, including PDE5 inhibition, ameliorate ANG II-induced podocyte dysmotility by targeting TRPC6 in podocytes, highlighting the potential therapeutic utility of these approaches to treat hyperactive TRPC6-dependent glomerular disease.


2020 ◽  
Vol 21 (7) ◽  
pp. 2297
Author(s):  
Dongdong Lin ◽  
Yujie Wei ◽  
Haihui Ye

Oxytocin (OT)/vasopressin (VP) signaling system is important to the regulation of metabolism, osmoregulation, social behaviours, learning, and memory, while the regulatory mechanism on ovarian development is still unclear in invertebrates. In this study, Spot/vp-like and its receptor (Spot/vpr-like) were identified in the mud crab Scylla paramamosain. Spot/vp-like transcripts were mainly expressed in the nervous tissues, midgut, gill, hepatopancreas, and ovary, while Spot/vpr-like were widespread in various tissues including the hepatopancreas, ovary, and hemocytes. In situ hybridisation revealed that Spot/vp-like mRNA was mainly detected in 6–9th clusters in the cerebral ganglion, and oocytes and follicular cells in the ovary, while Spot/vpr-like was found to localise in F-cells in the hepatopancreas and oocytes in the ovary. In vitro experiment showed that the mRNA expression level of Spvg in the hepatopancreas, Spvgr in the ovary, and 17β-estradiol (E2) content in culture medium were significantly declined with the administration of synthetic SpOT/VP-like peptide. Besides, after the injection of SpOT/VP-like peptide, it led to the significantly reduced expression of Spvg in the hepatopancreas and subduced E2 content in the haemolymph in the crabs. In brief, SpOT/VP signaling system might inhibit vitellogenesis through neuroendocrine and autocrine/paracrine modes, which may be realised by inhibiting the release of E2.


2016 ◽  
Vol 311 (3) ◽  
pp. L664-L675 ◽  
Author(s):  
Clémence O. Henry ◽  
Emilie Dalloneau ◽  
Maria-Teresa Pérez-Berezo ◽  
Cristina Plata ◽  
Yongzheng Wu ◽  
...  

Cystic fibrosis (CF) is an inherited disease associated with chronic severe lung inflammation, leading to premature death. To develop innovative anti-inflammatory treatments, we need to characterize new cellular and molecular components contributing to the mechanisms of lung inflammation. Here, we focused on the potential role of “transient receptor potential vanilloid-4” (TRPV4), a nonselective calcium channel. We used both in vitro and in vivo approaches to demonstrate that TRPV4 expressed in airway epithelial cells triggers the secretion of major proinflammatory mediators such as chemokines and biologically active lipids, as well as a neutrophil recruitment in lung tissues. We characterized the contribution of cytosolic phospholipase A2, MAPKs, and NF-κB in TRPV4-dependent signaling. We also showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids, i.e., four natural lipid-based TRPV4 agonists, are present in expectorations of CF patients. Also, TRPV4-induced calcium mobilization and inflammatory responses were enhanced in cystic fibrosis transmembrane conductance regulator-deficient cellular and animal models, suggesting that TRPV4 is a promising target for the development of new anti-inflammatory treatments for diseases such as CF.


1999 ◽  
Vol 339 (1) ◽  
pp. 185-192 ◽  
Author(s):  
Reika WATANABE ◽  
Kazuhito OHISHI ◽  
Yusuke MAEDA ◽  
Nobuo NAKAMURA ◽  
Taroh KINOSHITA

Glycosylphosphatidylinositol (GPI) is used as a membrane anchor by many eukaryotic cell-surface proteins. The second step of GPI biosynthesis is de-N-acetylation of N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI). We have previously cloned the rat PIG-L gene by expression cloning that complemented a mutant Chinese hamster ovary cell line defective in this step. Here we show that recombinant rat PIG-L protein purified from Escherichia coli as a complex with GroEL has GlcNAc-PI de-N-acetylase activity in vitro. The activity was not enhanced by GTP, which is known to enhance the de-N-acetylase activity of mammalian cell microsomes. As with other de-N-acetylases that act on the GlcNAc moiety, metal ions, in particular Mn2+ and Ni2+, enhanced the enzyme activity of PIG-L. The Saccharomyces cerevisiae YMR281W open reading frame encodes a protein (termed Gpi12p) with 24% amino acid identity with rat PIG-L. On transfection into mammalian PIG-L-deficient cells, this gene, GPI12, restored the cell-surface expression of GPI-anchored proteins and GlcNAc-PI de-N-acetylase activity. The disruption of the gene caused lethality in S. cerevisiae. These results indicate that GlcNAc-PI de-N-acetylase is conserved between mammals and yeasts and that the de-N-acetylation step is also indispensable in yeasts.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1535-1535
Author(s):  
Suzana M. Zorca ◽  
Emma C. Josefsson ◽  
Viktoria Rumjantseva ◽  
John H. Hartwig ◽  
Karin M. Hoffmeister

Abstract We previously reported that the lectin domain of the αMβ2 receptor on macrophages mediates the rapid clearance of transfused washed murine platelets which have been refrigerated for 2 hrs in the absence of plasma. The clearance is mediated by the recognition of exposed βN-acetylglucosamine (β-GlcNAc) residues on N-linked glycans of clustered platelet GPIbα molecules. Covering the exposed β-GlcNAc residues on GPIbα N-linked glycans via galactosylation prevents the clearance of chilled murine platelets from the circulation. The role of N-linked glycans in platelet function and survival is unclear. To dissect the role of N-linked glycosylation of GPIbα on the binding of von Willebrand factor (vWf), we use human platelets and Chinese Hamster Ovary (CHO) cells, stably expressing human GPIbα/βand GPIX. Deglycosylation of platelet GPIbα N-liked glycans was achieved using the enzyme peptide-N-glycosidase F (PGNaseF), specific for complex N-linked glycans. In agglutination assays using platelets incubated with and without PNGaseF for 16hrs at 37°C, we observed 30-40 % less agglutination in response to ristocetin for platelets depleted of N-linked glycans with PNGaseF. Additionally, a 30 % reduction in vWf binding to PNGaseF-treated platelets compared with control platelets was measured by flow cytometry, using a FITC-conjugated mAb that detects surface-bound vWf. In CHO cells, GPIbα N-linked oligosaccharides were manipulated by adding swainsonine or tunicamycin, two inhibitors of N-linked oligosaccharide synthesis in the Golgi. vWf binding to platelets or to CHO cells was studied by aggregometry or by light microscopy to establish the fraction of CHO-cell aggregates. As was the case with platelets, vWf-dependent aggregation of CHO cells expressing GPIb-IX decreased three fold in response to botrocetin, but only following complete N-linked glycans depletion with tunicamycin. In contrast, partial N-linked carbohydrate modification with swainsonine did not significantly alter aggregate formation in CHO- cells expressing GPIb-IX. Complete inhibition of N-linked glycosylation decreased botrocetin-induced vWf binding to CHO- cells expressing GPIb-IX by ~50%, as determined by flow cytometry. No change was observed following swainsonine treatment. Surface expression of GP1bα remained unchanged after both tunicamycin and swainsonine treatment, and with PGNaseF treatment of platelets. These results confirm that 1) N-linked glycans are not required for GPIbα surface expression, and 2) indicate that N-linked glycans likely play a role in vWf binding to platelet GPIbα.


2016 ◽  
Vol 48 (2) ◽  
pp. 380-392 ◽  
Author(s):  
Fien C. Devos ◽  
Brett Boonen ◽  
Yeranddy A. Alpizar ◽  
Tania Maes ◽  
Valérie Hox ◽  
...  

Asthma may be induced by chemical sensitisers,viamechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitrointracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using anin vivomodel, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, inTrpa1andTrpv1knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficientKitWsh/Wshmice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.


Sign in / Sign up

Export Citation Format

Share Document