scholarly journals FDA-Approved Oximes and Their Significance in Medicinal Chemistry

2022 ◽  
Vol 15 (1) ◽  
pp. 66
Author(s):  
Jyothi Dhuguru ◽  
Eugene Zviagin ◽  
Rachid Skouta

Despite the scientific advancements, organophosphate (OP) poisoning continues to be a major threat to humans, accounting for nearly one million poisoning cases every year leading to at least 20,000 deaths worldwide. Oximes represent the most important class in medicinal chemistry, renowned for their widespread applications as OP antidotes, drugs and intermediates for the synthesis of several pharmacological derivatives. Common oxime based reactivators or nerve antidotes include pralidoxime, obidoxime, HI-6, trimedoxime and methoxime, among which pralidoxime is the only FDA-approved drug. Cephalosporins are β-lactam based antibiotics and serve as widely acclaimed tools in fighting bacterial infections. Oxime based cephalosporins have emerged as an important class of drugs with improved efficacy and a broad spectrum of anti-microbial activity against Gram-positive and Gram-negative pathogens. Among the several oxime based derivatives, cefuroxime, ceftizoxime, cefpodoxime and cefmenoxime are the FDA approved oxime-based antibiotics. Given the pharmacological significance of oximes, in the present paper, we put together all the FDA-approved oximes and discuss their mechanism of action, pharmacokinetics and synthesis.

2021 ◽  
Author(s):  
Byungji Kim ◽  
Qinglin Yang ◽  
Leslie W. Chan ◽  
Sangeeta N. Bhatia ◽  
Erkki Ruoslahti ◽  
...  

RNAi-mediated immunotherapy provided by fusogenic porous silicon nanoparticles demonstrates superior therapeutic efficacy against both Gram-positive and Gram-negative bacterial infections compared with first-line antibiotics.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Roman Nudelman ◽  
Shira Gavriely ◽  
Darya Bychenko ◽  
Michal Barzilay ◽  
Tamilla Gulakhmedova ◽  
...  

AbstractBiofilms are responsible for about considerable amounts of cases of bacterial infections in humans. They are considered a major threat to transplant and chronic wounds patients due to their highly resistant nature against antibacterial materials and due to the limited types of techniques that can be applied to remove them. Here we demonstrate a successful in-situ bio-assisted synthesis of dual functionality nanoparticles composed of Silver and Gold. This is done using a jellyfish-based scaffold, an antibacterial material as the templating host in the synthesis. We further explore the scaffold’s antibacterial and photothermal properties against various gram-negative and positive model bacteria with and without photo-induced heating at the Near-IR regime. We show that when the scaffold is loaded with these bimetallic nanoparticles, it exhibits dual functionality: Its photothermal capabilities help to disrupt and remove bacterial colonies and mature biofilms, and its antibacterial properties prevent the regrowth of new biofilms. Graphical Abstract


2018 ◽  
Vol 16 (32) ◽  
pp. 5764-5770 ◽  
Author(s):  
Fang Yuan ◽  
Yuan Tian ◽  
Weirong Qin ◽  
Jingxu Li ◽  
Dan Yang ◽  
...  

Conformationally constrained peptides with either α-helical or β-hairpin conformations, possessing different topological distribution of hydrophobic and hydrophilic residues, displayed distinct anti-microbial activity towards Gram positive and Gram negative bacteria and fungi.


Author(s):  
Andrea Vila Domínguez ◽  
Manuel Enrique Jiménez Mejías ◽  
Younes Smani

Different institutions recognized that antimicrobial resistance is a global health threat that has compounded by the reduction in the discovery and development of new antimicrobial agents. Therefore, the development of new antimicrobial therapeutic strategies requires immediate attention to avoid the 10 million deaths predicted to occur by 2050 as a result of multidrug-resistant (MDR) bacteria. Despite the great interest in the development of repurposing drugs, only few repurposing drugs are under clinical development against Gram-negative critical-priority pathogens. In this chapter, we aim: (i) to discuss the therapeutic potential of the repurposing drugs for treating MDR bacterial infections, (ii) to summarize their mechanism of action, and (iii) to provide an overview for their preclinical and clinical development against these critical-priority pathogens.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Martin Vestergaard ◽  
Katrine Nøhr-Meldgaard ◽  
Martin Saxtorph Bojer ◽  
Christina Krogsgård Nielsen ◽  
Rikke Louise Meyer ◽  
...  

ABSTRACT Staphylococcus aureus is intrinsically resistant to polymyxins (polymyxin B and colistin), an important class of cationic antimicrobial peptides used in treatment of Gram-negative bacterial infections. To understand the mechanisms underlying intrinsic polymyxin resistance in S. aureus, we screened the Nebraska Transposon Mutant Library established in S. aureus strain JE2 for increased susceptibility to polymyxin B. Nineteen mutants displayed at least 2-fold reductions in MIC, while the greatest reductions (8-fold) were observed for mutants with inactivation of either graS, graR, vraF, or vraG or the subunits of the ATP synthase (atpA, atpB, atpG, or atpH), which during respiration is the main source of energy. Inactivation of atpA also conferred hypersusceptibility to colistin and the aminoglycoside gentamicin, whereas susceptibilities to nisin, gallidermin, bacitracin, vancomycin, ciprofloxacin, linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus. Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards polymyxins and that inhibition of the ATP synthase sensitizes S. aureus to this group of compounds. These findings show that by modulation of bacterial metabolism, new classes of antibiotics may show efficacy against pathogens towards which they were previously considered inapplicable. In light of the need for new treatment options for infections with serious pathogens like S. aureus, this approach may pave the way for novel applications of existing antibiotics. IMPORTANCE Bacterial pathogens that cause disease in humans remain a serious threat to public health, and antibiotics are still our primary weapon in treating bacterial diseases. The ability to eradicate bacterial infections is critically challenged by development of resistance to all clinically available antibiotics. Polymyxins constitute an important class of antibiotics for treatment of infections caused by Gram-negative pathogens, whereas Gram-positive bacteria remain largely insusceptible towards class of antibiotics. Here we performed a whole-genome screen among nonessential genes for polymyxin intrinsic resistance determinants in Staphylococcus aureus. We found that the ATP synthase is important for polymyxin susceptibility and that inhibition of the ATP synthase sensitizes S. aureus towards polymyxins. Our study provides novel insights into the mechanisms that limit polymyxin activity against S. aureus and provides valuable targets for inhibitors to potentially enable the use of polymyxins against S. aureus and other Gram-positive pathogens. IMPORTANCE Bacterial pathogens that cause disease in humans remain a serious threat to public health, and antibiotics are still our primary weapon in treating bacterial diseases. The ability to eradicate bacterial infections is critically challenged by development of resistance to all clinically available antibiotics. Polymyxins constitute an important class of antibiotics for treatment of infections caused by Gram-negative pathogens, whereas Gram-positive bacteria remain largely insusceptible towards this class of antibiotics. Here we performed a whole-genome screen among nonessential genes for polymyxin intrinsic resistance determinants in Staphylococcus aureus. We found that the ATP synthase is important for polymyxin susceptibility and that inhibition of the ATP synthase sensitizes S. aureus towards polymyxins. Our study provides novel insights into the mechanisms that limit polymyxin activity against S. aureus and provides valuable targets for inhibitors to potentially enable the use of polymyxins against S. aureus and other Gram-positive pathogens.


2020 ◽  
Vol 117 (49) ◽  
pp. 31376-31385
Author(s):  
Wenbin Zhong ◽  
Zhenyu Shi ◽  
Surendra H. Mahadevegowda ◽  
Bo Liu ◽  
Kaixi Zhang ◽  
...  

For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positiveStaphylococcus aureuswe obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogenPseudomonas aeruginosa,PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document