scholarly journals Micro-Pillar Integrated Dissolving Microneedles for Enhanced Transdermal Drug Delivery

Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 402 ◽  
Author(s):  
Seunghee Lee ◽  
Shayan Fakhraei Lahiji ◽  
Jeesu Jang ◽  
Mingyu Jang ◽  
Hyungil Jung

The dissolving microneedle (DMN) patch is a transdermal delivery system, containing arrays of micro-sized polymeric needles capable of encapsulating therapeutic drugs within their matrix and releasing them into the skin. However, the elastic properties of the skin prevent DMNs from complete insertion and accurate delivery of encapsulated compounds into the skin. Moreover, the adhesive materials used in patches may cause skin irritation, inflammation, and redness. Therefore, we developed a patchless, micro-pillar integrated DMN (P-DMN) that is simple to fabricate and enhances transdermal drug delivery compared with traditional DMN patches. The micro-pillars were made of polymethyl methacrylate at a height of 300 μm and a base diameter of 500 μm. To fabricate P-DMNs, we employed hyaluronic acid, which is a widely used derma filler and plays a role in tissue re-epithelialization. We demonstrate that utilizing P-DMNs significantly improves the delivery efficiency of an encapsulated drug surrogate (91.83% ± 7.75%) compared with traditional DMNs (64.86% ± 8.17%). Interestingly, P-DMNs remarkably increase the skin penetration accuracy rate of encapsulated drugs, up to 97.78% ± 2.22%, compared with 44.44% ± 7.85% in traditional DMNs. Our findings suggest that P-DMNs could serve as a highly accurate and efficient platform for transdermal delivery of various types of micro- and macro-biomolecules.

2016 ◽  
Vol 19 (2) ◽  
pp. 252 ◽  
Author(s):  
Hashem Alsaab ◽  
Sindhu Prabha Bonam ◽  
Dherya Bahl ◽  
Pallabita Chowdhury ◽  
Kenneth Alexander ◽  
...  

Organogels have emerged as an alternative carrier for small and macromolecules via transdermal, oral, rectal and ophthalmic routes. Pluronic lecithin organogels (PLO gels) are lecithin-based organogels widely used in compounding pharmacies as a vehicle for enhancing the transdermal permeability of many therapeutic drugs. However, the scientific and systematic evidence in support of how well PLO gels help in transdermal delivery is scanty. Recently, some clinical studies have reported nearly complete lack of bioavailability of certain topically administered drugs from PLO gels. The present review aims at summarizing gels and organogels, with a focus on the use of PLO gels in transdermal drug delivery. A special emphasis is placed on controversies looming over the use of PLO gels as a delivery platform for drugs via transdermal route. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. Objective: In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. Method: In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. Results: Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. Conclusion: The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.


2020 ◽  
Vol 11 (4) ◽  
pp. 5615-5625
Author(s):  
Akash Tekawade ◽  
Tanaji Nandgude

Transdermal drug delivery system is one of the leading technology which gives extensive benefits compared to other dosage forms. In the case of drugs having a first-pass metabolism problem, small doses of drugs can be delivered. Oral drug delivery is associated with several problems like pain interrelated with the use of injections,needles, and the researchers mainly focus on the development of the transdermal route. The aim is to provide a rationale for improvement of the transdermal system of antipsychotics by highlighting the antipsychotic formulation and safely delivering medications across the skin.The present review emphasis on the latest advances in a transdermal delivery system which acts as a platform for effective transdermal delivery of antipsychotic. By using this technique, the pharmacotherapy of patients who have psychosis can be improved. There are numeral physical methods, and the skin penetration enhancement techniques have been developed that helps in delivering drugs through the skin.This technique helps to alter the barrier properties of skin and improves the penetration of the drug.It majorly highlights the possible role of microneedle in the transdermal system and acts as a different carrier in delivering several therapeutic agents effectively. This article summarizes thenovel transdermal delivery approaches, advantages, and the choice of antipsychotropic drugs.


2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Vahid Alimardani ◽  
Samira Sadat Abolmaali ◽  
Gholamhossein Yousefi ◽  
Zahra Rahiminezhad ◽  
Mehdi Abedi ◽  
...  

Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs’ challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.


Author(s):  
Delly Ramadon ◽  
Maeliosa T. C. McCrudden ◽  
Aaron J. Courtenay ◽  
Ryan F. Donnelly

AbstractTransdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract


2009 ◽  
Vol 12 (1) ◽  
pp. 88 ◽  
Author(s):  
Jose Juan Escobar-Chavez ◽  
Dalia Bonilla-Martínez ◽  
Martha Angélica Villegas-González ◽  
Isabel Marlen Rodríguez-Cruz ◽  
Clara Luisa Domínguez-Delgado

Abstract Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of ultrasound to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. Ultrasound has been used extensively for medical diagnostics and to a certain extent in medical therapy (physiotherapy, ultrasonic surgery, hyperthermia). Nevertheless, it has only recently become popular as a technique to enhance drug release from drug delivery systems. A number of studies suggest the use of ultrasound as an external mean of delivering drugs at increased rates and at desired times. This review presents the main findings in the field of sonophoresis, namely transdermal drug delivery and transdermal monitoring. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Leonna Dsouza ◽  
Vivek M. Ghate ◽  
Shaila A. Lewis

AbstractDerma roller, a device rolled onto the skin to form micropores, is extensively used for cosmetic purposes. The pores thus created are utilized to either result in the induction of collagen production, leading to glowing and wrinkle-free skin or for permeating the applied formulations to the site of action within the skin. Recent studies have shown the benefits of using derma rollers for transdermal delivery of drugs. In the nascent stage, this approach paves a way to successfully breach the stratum corneum and aid in the movement of medications directed towards the dermis and the hair follicles. The review essentially summarizes the evidence of the use of derma rollers in cosmetic setup, their designing, and the preclinical and clinical reports of efficacy, safety, and concerns when translated for pharmaceutical purposes and transdermal drug delivery.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 163 ◽  
Author(s):  
Yongtai Zhang ◽  
Hongmei Hu ◽  
Qian Jing ◽  
Zhi Wang ◽  
Zehui He ◽  
...  

In the current study, diethylene glycol monoethyl ether-mediated microemulsions were combined with microneedles for enhanced transdermal aconitine delivery. The oil-in-water microemulsion increasedaconitine solubility and enhanced transdermal drug delivery and assistance with metal microneedles enhanced permeation of the aconitine-loaded microemulsion. Carried by the microemulsion, the in vitro permeability of aconitine was significantly enhanced, and further improved using microneedles. In vivo microdialysis revealed that the subcutaneous local drug concentration reached a high level within 30 min and remained relatively consistent to the end of the experimental period. AUC0-t of the microemulsion group was significantly higher than that of the aqueous solution group, and the microemulsion combined with microneedles group achieved the highest AUC0-t among the tested groups. The microemulsion and microdialysis probe also showed good biocompatibility with skin tissue. The microemulsion could be internalized by HaCaT and CCC-ESF-1 cells via lysosomes. The in vitro cytotoxicity of aconitine toward skin cells was reduced via encapsulation by microemulsion, and the prepared microemulsion developed no skin irritation. Hence, transdermal aconitine delivery and drug biosafety were effectively improved by loading into the microemulsion and assisting with microneedles, and in vivo microdialysis technique is suitable for realtime monitoring of transdermal drug delivery with microemulsion-based drug vehicles.


2016 ◽  
Vol 4 (3) ◽  
pp. 418-429 ◽  
Author(s):  
Santanu Patra ◽  
Ekta Roy ◽  
Rashmi Madhuri ◽  
Prashant K. Sharma

Novel polyarginine-conjugated C dot modified spherical nano-liposomes with enhanced stability, long circulation time and high cytocompatibility are successfully prepared and investigated for transdermal drug delivery.


Sign in / Sign up

Export Citation Format

Share Document